
CS322 Lecture Notes: Interpolation

Steve Marschner
Cornell University

12 February 2007

A problem that arises all the time is that you have the values of some function
at a set of points, but you need to know values everywhere. The points could
be:

• from some measurement. For instance, an air traffic radar gives you posi-
tion of an aircraft at discrete times, but you may well be interested in the
location of an aircraft at the time of some event that happened between
times.

• from some expensive computation. For instance, maybe you are running
two simulations, one computing fluid flow around an aircraft and one simu-
lating the control surface hydraulics. Each may proceed in its independent
sequence of time steps, but they need to communicate with one another
at common instants in time.

• from some table you built of values for a function that’s easy enough to
evaluate but takes longer than you’d like. For a hypothetical example,
maybe you are computing CMY values for a laser printer, which were
computed by inverting the measured CMY to RGB map. You have a
procedure for computing the values but it’s too slow to use for millions of
pixels in an image, so you build a table and interpolate instead.

The basic approach to interpolation is to fit some function to some values
(maybe all of them; maybe only some values near where you are evaluating),
then evaluate that function at the desired point(s). Polynomials (or sometimes
rational functions, which I won’t talk about today) are the near-universal choice.
What order you pick, and which points you fit it to, and how, determines the
method.

Another important distinction is the dimension of the problem. We’ll look
at a lot of 1D examples, and interpolation in 1D (particularly if the one dimen-
sion is time) is common. But for spatial and other multidimensional problems
(e.g. color), we often need to interpolate in higher dimensiont, which gets more
interesting (and more expensive) for regular grids and distinctly more difficult
for non-regular data.

1



1 linear interpolation: 1D

The simplest place to start is with first order. (The order of an interpolation
scheme, by one definition, is one less than the number of points involved in
defining an output value.)

Given points (xi, yi) for i = 1 . . . n, with the xi increasing, we can construct
the linear interpolant, which is a piecewise linear function that has one piece
between each pair of successive input points.

We could just find the m and b from the two xs and ys, but it’s simpler just
to write:

y(x) = m(x− xk) + yk

which amounts to shifting the x origin to xk. Then it’s clear that if y(xk+1) is
supposed to be yk+1 we want

m =
yk+1 − yk

xk+1 − xk
or m =

∆y

∆x
.

That is, the value is a weighted average between the points on either side, with
a weight that favors the closer one.

So there is an algorithm: Store (xi, yi) in a table, and when a value for x
walks in the door, use binary search to find k, then interpolate between y − k
and yk+1, using α = (x−xk)/(xk+1−xk) and (1−α) = (xk+1−x)/(xk+1−xk)

2 Interpolating polynomials

We have talked about polynomial fitting: a degree n polynomial to m > k + 1
points. The exactly determined case m = n + 1 is computing the interpolating
polynomial of a set of points.

Interpolating polynomials that fit a lot of points (and are therefore of high
order) are generally not very useful, at least directly, because they tend to have
too much variation. In low order they are often useful, though, often as pieces
of other methods.

The matrix form of the problem asks for the coefficients of the polynomial

p(x) = anxn + . . . + a1x + a0

2



Writing p(xi) = yi for the n + 1 points results in a matrix equation:
xn

1 xn−1
1 · · · x1 1

xn
2 xn−1

2 · · · x2 1
...

...
xn

m xn−1
m · · · xm 1




an

an−1

...
a0

 =


y1

y2

vdots
ym


V x = y

The square matrix V is known as a Vandermonde matrix.
A different approach is due to Lagrange. Let’s say we are looking for the

quadratic interpolant that goes through (x1, y1), (x2, y2), and (x3, y3). First I
can write down a polynomial of degree 2 that has the value 1 at x1 and 0 at the
other two points:

p1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)

I can construct p2 and p3 similarly—for pk, leave out (x−xk) in the numerator
and include (xk − xi) for i 6= k in the denominator.

These three polynomials are building blocks we can use to construct a poly-
nomial with any desired values yi:

p(x) = y1p1(x) + y2p2(x) + y3p3(x)

(You may recognize the pattern (x− x1)/(x2 − x1) from the linear interpo-
lation section. The way we constructed the linear interpolant is basically using
the Lagrange polynomials for degree 1.)

These formulas let you evaluate the interpolant without having to actually
compute the coefficients of the polynomial. This can be important for stability—
you should not assume that you necessarily need to get your hands on the
coefficients of the interpolating polynomial.

3 Linear interpolation: 2D

Now suppose you have some values of a function z = f(x, y).

• For example: a digital elevation map: you want to generate nice smooth
contours for hiking maps based on grids of elevation as a function of lat-
itude and longitude that can be downloaded from USGS. This is going
to require computing values at points that are between the grid locations
where you are given elevation.

• For example: Computed Tomography (CT) or Magnetic Resonance Imag-
ing (MRI) medical data. These scanners produce maps of density (or
other physical properties) as a function of 3D position, generally for dis-
tinct slices through a body. We may need to shift and rotate one slice
relative to the next, due to motion of the patient between scans. Without

3



interpolation we are limited to shifting by an integer multiple of the grid
spacing, but with the ability to evaluate between the points, we can shift
it exactly as much as is needed.

There are two distinct generalizations of linear interpolation to 2D: bliniear
and what I’ll call “truly linear.”

3.1 Bilinear interpolation

Bilinear interpolation is by far the more common. The idea is to interpolate
along one dimension using values that were themselves interpolated along the
other dimension.

(Here I have renamed the points x0, x1 rather than xk, xk+1 to keep the indices
from getting out of hand.)

If I had values at (x, y0) and (x, y1) then I could linearly interpolate along
the vertical line. No problem—just generate them by interpolating along the
horizontals!

zx0 = (1− α)z00 + αz10 α = (x− x0)/(x1 − x0)
zx1 = (1− α)z01 + αz11

zxy = (1− β)zx0 + βzx1 β = (y − y0)/(y1 − y0)

Note that it does not matter whether I interpolate across and then down or
down and then across (i.e. on x first or y first). Either way I end up with

zxy = (1− α)(1− β)z00 + (1− α)βz01 + α(1− β)z10 + αβz11

This is bilinear interpolation. It results in a piecewise function that is not
piecewise linear—of course it can’t be, because it matches the data at four
different points, and three points uniquely determine the linear function. It has
a piece for each cell in the grid of data points, but the interpolation defined over
that rectangle is not linear. Look at this most recent equation, remembering
that α is a linear function of x and β is a linear function of y. The full expression
for zxy is going to contain a constant term, an x term, a y term, and an xy term.
Because of the presence of this last term is is not linear.

This kind of function is called bilinear because it is linear as a function of x
when y is held fixed and also linear as a function of y when x is held fixed.

4



3.2 Truly linear interpolation

We can’t have a piecewise linear interpolant where the pieces are the cells of our
grid. This would require a linear function in 2D that matches with prescribed
values at 4 points. We saw in HW2 that this is already a fully determined
problem for 3 points.

However, if we cut the squares along their diagonals and define a linear
interpolant for each half, we can make it work:

• (1) has a linear function defined by (x1, y0) 7→ z10, (x1, y1) 7→ z11, and
(x0, y1) 7→ z01.

• (2) has a linear function defined by (x0, y0) 7→ z00, (x1, y0) 7→ z10, and
(x0, y1) 7→ z01.

We saw in HW2 how to construct this linear (affine, really) interpolant. It
is a 3-vector (coefficients for x, y, and 1).

Of course this will work for any set of triangles, not only for triangles that
are made by cutting the squares of a grid in half.

When your data naturally comes with a triangulation, this approach is gen-
erally best. When the grid is naturally rectilinear, bilinear is probably most
convenient. When there is no organization at all, you can build a triangulation
(hint: see the delaunay function in Matlab) or use the method from the next
section.

4 Local least squares

Linear interpolation extends to more than one dimension only when a grid or
a triangulation is available. But what if we are handed data points with no
particular placement? This problem is known as scattered data interpolation.

If they would all fit a single polynomial, this would be no problem. But we
know this is a bad idea.

If the came with a triangulation we could use that and do truly linear inter-
polation. But we may prefer not to build one.

If we tolerate inexactness at the data points (maybe they are approximate
anyway), we could fit a low-order polynomial by least squares. But this may
not be expressive enough for the whole function.

Idea: fit a low-order polynomial locally to just a few data points near where
we are trying to get a value.

5



If we just do this literally, the function will have discontinuities as points drop
into and out of the interval around x. But we can use a weighting function
w(x− xi) to reduce the weight of points gradually to zero.

(Read more about local least squares in the notes associated with Project
1.)

Sources

• Press, Teukolsky, Vetterling, and Flannery, Numerical Recipes in C, Sec-
ond edition. Cambridge Univ. Press, 1992. Chapter 3.

• Our textbook: Moler, Numerical Computing in Matlab. Chapter 3.

6


