
CS 322 Homework 8 — Solutions

out: Thursday 26 April 2007
due: Fri 4 May 2007

In this homework we’ll look at propagation of error in systems withn× n Hilbert matrices
Hn, which look like this:
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These matrices are ill-conditioned and get worse quickly asn increases.

Relevant Matlab functions for this homework includehilb , cond , chi2pdf , chi2cdf ,
andchi2inv .

Problem 1: Conditioning of linear systems.

1. One can study the propagation of error from the right-hand side to the solution in a
linear system using a brute-force Monte Carlo experiment: add random errors artifi-
cially to the right hand side and see how much error they induce in the solution.

Using the following procedure, estimate the condition numbers ofH2 andH5.

• Choose 10,000 random right-hand sides for the systemHnx = b.

• Perturb each right-hand side by a normally distributed random error with stan-
dard deviation10−6.

• Solve the original and perturbed systems and compare the results.

• Compare the relative errors in the right-hand sides and the solutions.

Illustrate your work with a short Matlab transcript.

For H2 you should be able to estimate the true condition number pretty well. How
good is your estimate forH5 and why?

Hint: You can do this experiment in about 5 Matlab statements.

Answer::

1
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k = 2;
H = hilb(k);
b = 2* rand(k, 10000) - 0.5;
e = 1e-6 * randn(k, 10000);
max((sqrt(sum((H\(b+e)-H\b).ˆ2,1))./sqrt(sum((H\b).ˆ2,1)))...

. * (sqrt(sum(b.ˆ2,1)) ./ sqrt(sum(e.ˆ2, 1))) )
cond(H)

This code returns around19.196 for k = 2 and1598.7 for k = 5. Compare this to
the true condition numbers of19.281 for H2 and476607 for H5. We can see that
our estimate forH2 is quite good; however, our estimate forH5 is off by several
orders of magnitude. This can be attributed to two factors: one, we are randomly
exploring a higher dimensional space (5 compared to 2), and two, the poor condi-
tioning ofH5 means that we need to get very close to the direction of the worst case
RHS/perturbation in order to get close to the worst case error growth. As a result, it
is relatively unlikely that we will randomly find the worst case error growth forH5

in only 10000 samples.

2. Use the SVD to find a right hand side and perturbation that demonstrate error growth
that achieves the bound given by the condition number.

Answer:Taking the SVD ofH2, we getUΣVTx = b+ e. We would like to choose
b ande such that the relative growth of error is maximized. This can be done by
choosingb to be a vector whose norm shrinks the most when multiplied byH−1

2 and
e to be a vector whose norm increases the most when multiplied byH−1

2 . Looking
at the SVD, we see thatU1 (the first singular vector inU) will be multiplied by 1

σ1

and so it will shrink, whileU2 will be multiplied by 1
σ2

and so it will grow. Thus, we
chooseb = U1 ande = U2. This is confirmed by testing in MATLAB:

H = hilb(2);
[U,S,V] = svd(H);
b = U(:, 1);
e = 1e-6 * U(:, 2);
(norm(H\(b+e) - H\b) / norm(H\b)) * norm(b) / norm(e)

which returns19.2815 for the growth of error forH2. We can extend this toH5 by
settinge = U5, obtaining476607 for the growth of error forH5

?3. Repeat question 1, but this time perturb the matrix instead of the right-hand side.
Does the condition number still bound the growth of error when it propagates from
the matrix to the solution?

Answer:The code is extremely similar and not repeated here, but you should see that
the condition number still bounds the growth of error when it propagates from the
matrix to the solution.
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?4. Repeat question 2, but this time work out the worst-case perturbation to the matrix.

Answer:The matrix perturbation isE = UkσkVk, wherek = 2 or 5 depending on
the size ofH, and the right hand side isUk, i.e. the last singular vector

Problem 2: Theχ2 distribution.

1. Use Monte Carlo to estimate the probability that the norm of a pointx drawn from
a 3D Gaussian distribution with unit standard deviation has a norm greater than 2.
How many samples do you need to get 3 significant figures of accuracy?

Answer:

x = randn(3, 1000000);
nx = sqrt(sum(x.ˆ2, 1));
ind = find(nx > 2);
size(ind,2)/1000000

This returns a probability of about0.2618. In testing, it seems as if about a million
samples are needed in order to reasonably guarantee 3 significant figures of accuracy.

2. Use Matlab’s built inχ2 functions to compute the same number.

Answer:Using1 - chi2cdf(4, 3) , we obtain0.2615. Note that we are using
4 = 22 instead of2, because theχ2 distribution is measuring the2-norm squared (i.e.
the square of length).

3. Let y = H3x. Give a 90% confidence region fory (specified as the axes of the
ellipse) and for its first component,y1.

Answer:

[U,S,V] = svd(hilb(3));
>> rad = sqrt(chi2inv(.9, 3));
>> Ellipse = rad * U* S

Ellipse =

-2.9122 0.1674 0.00086
-1.6193 -0.1616 -0.00480
-1.1384 -0.1985 0.00463
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>> Individual = sqrt(chi2inv(.9, 1)) * U* S;
>> y1 = norm(Individual(1,:))

y1 =

1.9190

Problem 3: Confidence in least squares fits.

In this problem, no fair using Monte Carlo except where specified. Specify all confidence
ellipses as the axes of the ellipse.

1. The filehw08data1.txt contains 20(x, y) points in which all theys have inde-
pendent Gaussian noise withσ = 0.05.

(a) Fit the modely = a1x + a2 to the data using linear least squares.

Answer:a1 = 0.3029 anda2 = 0.5036 using standard least squares fitting.

(b) Give 90% confidence intervals fora1 anda2. Plot the lines corresponding to
the four extreme combinations of parameters against the data points.

Answer:

>> M = [xs, ones(20, 1)];
>> [U,S,V] = svd(M,0);
>> rad = 0.05 * sqrt(chi2inv(0.9, 1));
>> Individual = rad * V* Sˆ-1;
>> ar = sqrt(sum(Individual .ˆ2, 2))

ar =

0.05641
0.03332

These are the radii for the individual confidence intervals, so the actual 90%
confidence intervals area1 ∈ [0.2465, 0.3593] anda2 ∈ [0.4702, 0.5369]. Note
that there was some confusion in office hours about whether the distribution
used should have1 or 2 degrees of freedom. The correct answer uses1 degree
of freedom, but we accepted answers that computed the values using2 degrees
of freedom.

We note that we can seeVΣ−1 are the important axes by multiplying both sides
of Ma = ys by M+, ending up witha = VΣ−1

√
0.052chi2inv(0.9, 1) (since

U does not change the distribution of noise at all).
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Looking at Figure (1b), we can see the original fit in red and the four green
lines corresponding to the four extreme choices of parameters from our 90%
confidence intervals.

(c) Confirm your intervals using Monte Carlo.

Answer:

k = 10000;
ybig = repmat(av(1) * xs + av(2), 1, k) + 0.05 * randn(20, k);
parambig = A\ybig;
size(find(abs(parambig(1,:) - a1) <= ar(1)),2) / k
size(find(abs(parambig(2,:) - a2) <= ar(2)),2) / k

ans =

0.8973

ans =
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0.9011

From this we can see that our parameters computed using Monte Carlo fall
within our 90% confidence interval just about 90% of the time, as expected

(d) Give a 90% confidence ellipse for(a1, a2) together. Plot the lines corresponding
to the ends of the principal axes of the ellipse against the data points.

Answer:

>> rad = 0.05 * sqrt(chi2inv(0.9, 2));
>> Ellipse = rad * V* Sˆ-1

Ellipse =

-0.01010 0.07290
-0.01879 -0.03920

We can check these using Monte Carlo (not shown, but similar to the above
code), observing that it matches closely with experimental results.

We can plot this using

>> plot(xr, xr * (a1+Ellipse(1,1)) + a2+Ellipse(2,1), ’g-’)
>> plot(xr, xr * (a1-Ellipse(1,1)) + a2-Ellipse(2,1), ’g-’)
>> plot(xr, xr * (a1-Ellipse(1,2)) + a2-Ellipse(2,2), ’g-’)
>> plot(xr, xr * (a1+Ellipse(1,2)) + a2+Ellipse(2,2), ’g-’)

obtaining figure (1d), we can see the original fit in red and the four green lines
corresponding to the four choices of parameters from each axis of the ellipse.
We note that the values in general are closer to the computed fit than the lines
in part (b).

?2. The filehw08data1.txt contains 20(x, y) points in which all theys have inde-
pendent Gaussian noise withσ = 0.01.

(a) Fit the modely = a1e
a2x to the data using linear least squares.

Answer:We note thatln y = ln a1 + a2x, allowing us to solve for the terms
a2 and ln a1. We then takeeln a1 in order to obtain the parametera1. One
other issue is the fact that the uncertainties (σ = 0.01) in the y values are not
the same in log space — the logs of small values will have their uncertainties
magnified. For small errors like these, we assume that the error is magnified by
the derivative ofln y, i.e. 1

y ; as a result, we have to weight each data point by
its y value.
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>> lny = log(ys);
>> M = [ones(20, 1), xs];
>> sigmas = 0.01 ./ ys;
>> A = diag(1./ sigmas) * M;
>> b = diag(1./ sigmas) * lny;
>> ar = A \ b;
>> a1 = exp(ar(1));
>> a2 = ar(2);

This gives usa1 = 14.167 anda2 = −2.956

(b) Give 90% confidence intervals fora1 anda2. Plot the curves corresponding to
the four extreme combinations of parameters against the data points.

Answer:

>> [U,S,V] = svd(A,0);
>> rad = sqrt(chi2inv(0.9, 1));
>> Individual = rad * V* Sˆ-1;
>> arad = sqrt(sum(Individual .ˆ2, 2))

arad =

0.2289
0.1831

Note that this gives us the interval ofln a1 anda2, nota1 anda2. To compute the
interval fora1, we note that(ln a1) + r is equal to(ln a1) + ln er = ln(a1e

r),
and similarly(ln a1) − r is ln

(
a1
er

)
. Thus, our confidence intervals area1 ∈

[11.268, 17.809] anda2 ∈ [−3.139,−2.773]

(c) Give a 90% confidence ellipse for(a1, a2) together. Plot the curves correspond-
ing to the ends of the principal axes of the ellipse against the data points.

Answer:

>> rad = sqrt(chi2inv(0.9, 2));
>> Ellipse = rad * V* Sˆ-1

Ellipse =

-0.0070 -0.1814
-0.0087 0.1450
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>> Ellipse(1, :) = exp(Ellipse(1,:))

Ellipse =

0.9930 0.8341
-0.0087 0.1450

Looking at Figure (1b), we can see the original fit in red and the four green
lines corresponding to the four extreme choices of parameters from our 90%
confidence intervals.

(d) Find the 90% confidence ellipse using a Monte Carlo simulation. Why might
the result be different from the previous part?

The code to do this is similar to the previous Monte Carlo simulation. However,
in this case the result might be different because there is a nonlinear opera-
tion (natural logarithm) applied as part of the fit, while the computations above
assume that only linear operations are applied to the Gaussian noise.


