
CS 322 Homework 7

out: Thursday 12 April 2007
due: Wednesday 18 April 2007

Ordinary Differential Equations

Problem 1: Problem 7.1 in Moler

Answer:Our state vector is

y =


u
v
a
b

 (1)

wherea = u̇ andb = v̇. Our ODE is then of the form

ẏ =


u̇
v̇
ȧ

ḃ

 = f(t,y) =


a
b

v
1+t2

− sin
(√

a2 + b2
)

−u
1+t2

+ cos
(√

a2 + b2
)
 (2)

y0 =


1
0
0
0

 (3)

Problem 2: Stiff Systems

Take the sample ODE given on Moler p. 205

1



CS 322 Homework 7 2

ẏ = y2 − y3

y(0) = δ

0 ≤ t ≤ 2
δ

1. Implement three MATLAB functions

function y = intFlameForwardEuler(delta, h)
function y = intFlameMidpoint(delta, h)
function y = intFlameBackEuler(delta, h)

that integrate the above ODE given the parameterδ and the fixed timesteph to step
over the specified interval oft using the appropriate fixed-stepsize integrator (For-
ward Euler, Midpoint, and Backward Euler). Your functions should return a vectory
wherey(i) is the computed value ofy at timestepti = ih.

Answer:

function y = intFlameForwardEuler(delta, h)
% Forward euler integrator

tEnd = 2 / delta;
numSteps = ceil(tEnd / h);
ts = tEnd / numSteps;

y = zeros(numSteps, 1);

yp = delta;

for i = 1:numSteps
y(i) = yp + ts * (ypˆ2 - ypˆ3);
yp = y(i);

end

function y = intFlameMidpoint(delta, h)
% Midpoint integrator
tEnd = 2 / delta;
numSteps = ceil(tEnd / h);
ts = tEnd / numSteps;



CS 322 Homework 7 3

y = zeros(numSteps, 1);

yp = delta;

for i = 1:numSteps
k1 = (ypˆ2 - ypˆ3);
yhalf = yp + ts * k1 / 2;
y(i) = yp + ts * (yhalfˆ2 - yhalfˆ3);
yp = y(i);

end

function y = intFlameBackEuler(delta, h)
% Backward Euler integrator
tEnd = 2 / delta;
numSteps = ceil(tEnd / h);
ts = tEnd / numSteps;

y = zeros(numSteps, 1);

yp = delta;

for i = 1:numSteps
coeffs = [-ts ts -1 yp]’;
soln = roots(coeffs);
soln = soln(imag(soln) == 0);
% May have multiple solutions. Find solution
% closest to current point
distVec = soln - repmat(yp, 3, 1);
dist = distVec . * distVec;
[v, ind] = min(dist);
y(i) = soln(ind);
yp = y(i);

end

One issue to note is that for large timesteps for Backward Euler, multiple real solu-
tions could exist. In this case, we attempt to do something reasonable to find the one
solution we are interested in, and take the solution that is closest to the current value
of yn.

2. Plot the computed value ofy for δ = 0.0005 with each of your methods using at
least three different choices of timesteps. What do you observe about the solution



CS 322 Homework 7 4

computed by each of these methods? What can you say about the order of accuracy
(how fast the answer gets better as a function of stepsizeh) and stability (stepsizesh
for which the answer does not diverge) for each of the three methods on this problem?
Submit your plots along with your answer. Your code should be submitted through
CMS.

Answer:Code to plot results:

function plotODEError(fun, times, fName)

figure();
axes();
n = size(times, 2);
subplot(n, 2, 1);

yt = intFlameMidpoint(0.0005, 1e-3);
tEnd = 2 / 0.0005;
for t = 1:n

y = fun(0.0005, times(t));

numSteps = ceil(tEnd / times(t));
ts = tEnd / numSteps;
step = ts / 1e-3;
err = abs(y - yt(step:step:end));
subplot(n, 2, 2 * t-1);
nStep = size(y, 1);
tStep = times(t) * (1:nStep);
plot(tStep, y);
title(sprintf(’Plot of %s with h = %g’, fName, times(t)));
subplot(n, 2, 2 * t);
plot(tStep, err);
title(sprintf([’Error of %s with h = %g\n’]...

[’compared to midpoint, h = 1e-3’], ...
fName, times(t)));

end

See attached graphs. We observe that for Forward Euler, the accuracy seems to im-
prove linearly as a function of the timestep (0.1 is about ten times better than1). At
aroundh = 2, some mild instabilities are displayed, but it is able to stay at the so-
lution within reason. Ath = 3 the instability becomes obvious — this is very near
the edge of the stability region for this problem and integrator, as the solution varies
wildly. Finally, ath = 5 (andh = 4, not shown), the solution explodes.



CS 322 Homework 7 5

As for Midpoint, we observe that the accuracy improves roughly as the square of the
timestep —h = 0.1 is about100 times more accurate thanh = 1. The stability
boundary moves slightly, as the behavior we were seeing in Foreward Euler ath = 3
is not displayed in Midpoint untilh = 3.5. Still, it is right at the edge of the stable
solution, and in fact ath = 4 the solution diverges.

Finally, for backward euler, we note that the accuracy improves about as well as
forward euler. This is to be expected, as they are the same order of accuracy. The
advantage of backward euler, though, is in the timesteps we are allowed to take.
Backward euler is able to take increasingly large timesteps without displaying any
divergent behavior, even ath = 100 (well outside the stability regions of Forward
Euler and Midpoint). Even though the error can be considered to be pretty poor in
this region, it is always able to eventually track the true solution.

Problem 3: [?] Error analysis

Consider the following ODE integrator, which comes from the Adams family of methods

un+1 = un +
h

2
(3f(tn, un)− f(tn−1, un−1))

Using the methods discussed on Moler p. 215, show that the local discretization error of
this method isO(h3), and so the method is of order 2.

Answer:Assume that we have the exact answer foru(tn) = un. Substitute this into the
right hand side of the equation:

un+1 = un +
h

2
(3f(tn, un)− f(tn−1, un−1))

un+1 = u(tn) +
h

2
(3f(tn, u(tn))− f(tn−1, un−1))

We note that by definition of the ODE,u′(t) = f(t, u(t)) and so we can substitute

un+1 = u(tn) +
h

2
(
3u′(tn)− u′(tn − h)

)
Perform a Taylor expansion onu′(tn − h) abouttn:



CS 322 Homework 7 6

un+1 = u(tn) +
h

2

(
3u′(tn)−

(
u′(tn)− hu′′(tn) +

h2

2
u′′′(tn) + O(h3)

))
un+1 = u(tn) +

h

2

(
2u′(tn) + hu′′(tn)− h2

2
u′′′(tn) + O(h3)

)
un+1 = u(tn) + hu′(tn) +

h2

2
u′′(tn)− h3

4
u′′′(tn) + O(h4)

However, we note that performing a Taylor expansion onu(tn + h) abouttn gives us

u(tn + h) = u(tn) + hu′(tn) +
h2

2
u′′(tn) +

h3

6
u′′′(tn) + O(h4)

Calculatingu(tn + h)− un+1 leaves us with−h3

12 u′′′(tn) + O(h4), leaving us with an error
of at mostO(h3), and so we can conclude that the order of accuracy for this method is
p = 2.



CS 322 Homework 7 7

Figure 1: Graphs of Forward Euler and error for various timesteps



CS 322 Homework 7 8

Figure 2: Graphs of Forward Euler and error for various timesteps



CS 322 Homework 7 9

Figure 3: Graphs of Forward Euler and error for various timesteps


