
CS 322 Homework 6

out: Tuesday 27 March 2007
due: Wed 11 April 2007

Principal components analysis: Eigenfaces

The data filehw6faces.mat contains a320 × 200 × 40 matrix which comprises 40
images: 10 faces under 4 lighting conditions each. (The images are from the Yale Face
Database B.) These images have some similarities, since they are all faces, and we can use
PCA to try to capture these similarities using a set of basis images. (This approach was
pioneered by Turk and Pentland in 1991, who dubbed the resulting principal components
“eigenfaces.”)

1 Compute the principal components of the set of images (i.e. the eigenfaces) using
the SVD. In this context you should treat the pixels in each image as a single vector:
the PCA process is just taking linear combinations of pixel, without regard for where
the pixels are in the images. Describe the first three eigenfaces in terms of what they
capture about the variations among the images.

Answer:

load hw6faces.mat
A = reshape(faces, [320 * 200 40]);
[U,S,V] = svd(A - mean(A’)’ * ones(1,40), 0);
efaces = reshape(U, size(faces));

The eigenfaces are the columns ofU reshaped back into images. The first face is
a generic-looking face that contains strong left-right lighting, while the second and
third faces both look much like the face of the single female in the sample set, with
the third face emphasizing her bangs and neck slightly more. See Figure (1). Here
we are subtracting the mean before performing PCA – if we do not subtract the mean,
then our first eigenface is the mean face, and the second and third eigenfaces are the
first and second eigenfaces above, respectively.

2 If I want to approximate thejth image by a linear combination of the firstk Eigen-
faces, what are the weights to use?
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Figure 1: First three eigenfaces

Answer:U(:,1:k) * S(1:k,1:k) * V(j,1:k)’ is the approximation of the
j-th image with the firstk eigenfaces. From this, we can conclude that the weights
to use come from thej-th column ofV T with each component scaled by the firstk
singular values

3 Try approximating the faces in the dataset with different numbers of eigenfaces. How
many do you need before the faces become recognizable?

Answer:Somewhere between 5 and 8 faces are usually enough, depending on how
stringent your requirements for ”recognizable” are.

?4 Take a picture of yourself or a friend with a neutral expression and soft lighting,
so that it looks similar to the faces in the dataset. Usingcpselect , cp2tform ,
andimtransform , align it (by a “linear conformal” mapping, ascp2tform calls
it) to the images in the dataset. Show the approximations for different numbers of
eigenfaces How well can you approximate this new image?

Answer:The face needs to be aligned exactly and have a neutral expression; other-
wise features like eyes and mouths tend to be extremely difficult to capture. Even
when well-aligned, it is quite difficult to get a good approximation to the image. In-
cluding the new image in the sample data and re-running the PCA of course returns
much better results, but the idea was to see how well the sample data could capture
the new data.

5 How many eigenfaces do you need to approximate the original data matrix to within
1%? (That is, the F-norm error is less than 1% of the F-norm of the data matrix.)
How can you tell this from looking at the singular values?
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Figure 2: A vectorv, an approximationvk, and the errorv − vk

Answer:The F-norm of a matrixA = USVT is the F-norm of the matrixS; that is,
it is the square root of the sum of squares of the singular values (becauseU andV
are orthonormal, they do not change the F-norm). We wish to bound the F-norm of
the error matrixA−Ak, whereAk = U(:, 1 : k)S(1 : k, 1 : k)V(:, 1 : k)′. We note
that the F-norm ofA−Ak is simply the F-norm ofS(k + 1 : n, k + 1 : n), i.e. the
singular values not included in the approximationAk. Thus, we wish to findk such
that‖S(k + 1 : n, k + 1 : n)‖ < 0.01‖S‖. When we subtract the mean,k = 37.
When we do not subtract the mean,k = 31.

Note that this is different than computingk such that‖Ak‖ ≥ 0.99‖A‖. To see this,
consider the case of 2D vectors in Figure (2). Here we have some vectorv, and some
approximationvk. ‖vk| ≥ 0.99‖v‖ (in fact, the two vectors have equal norm), but
this does not say anything about the errorv − vk, which is still quite significant. As
a result, in our computation of error, we need to make sure we are bounding the norm
of theerror and not the norm of theapproximationrelative to the solution.


