CS 322 Homework 3 - Solutions

out: Thursday 22 February 2007
due: Wednesday 28 February 2007

Part A - Half-Precision Arithmetic

Problem 1 What is the half-precision representation of the number 8205 in half-precision?

We can represent 3 in binary scientific notationi dsx 2!. The sign bit i9), and the exponent i
which is biased byt 5 to get16. The mantissa i$000.0000.00 (note that there is an implicit). As
a result, the half precision representatiof.if)000.1000000000.

In binary scientific notation;-27.5is —1.10111 x 2%. The sign bit isl, and the exponent i§ which
is biased byl5 to get19. The mantissa i$011.1000.00 (again, note the implicit leading), and so
the half precision representation1id0011.1011100000.

Problem 2 What is the value of epsilon foi% in half-precision? Fot000.1 in half-precision?

Note: Epsilon is technically defined as the distance fronfltieing point representatioaf a given
number to the next largest number in the same precision,raot the exact number to the next
largest in the same precision. For instance, epsilog%oifs the distance from the floating point
representation Oi% (which will not be exactly%) to the next largest number in the same precision.

For -, we observe that it can be representedl—léal_s%.3—12 + 5 +.5% + o056 + 593 + -0 OF
1.1001100110 x 2—* in half precision. The last bit in the mantissa represents!, so the next
largest number i8~'* away in half precision, and sb'* is the value of epsilon fog;.

For 1000.1, we observe that it can be represented.a$11010000 x 2° in half precision. Again,
the last bit in the mantissa represets, so the next largest numberds! away in half precision,
and so2~! is the value of epsilon for000.1.

Part B - Error Visualization

Problem 1

Problem 2

function plotError(data)
% Takes in a matrix of data fromroundoffPlotter and
% generates one or nore interesting plots of the error.
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% See the homework assignnent for a detail ed description
% of the format of data.

% Create a new figure to draw in. You SHOULD NOT renove them
figure();
axes();

% Your code to plot the error should go here

% create a subplot with 4 plotting regions, set the first one
%to be active

subplot (2, 2, 1);

nuntt eps = si ze(data, 2);

angl es = 1: nuntt eps;

radi ans = angl es*pi / 180;

% conpute the error in edge |lengths for each edge

el = data(3:4, :) - data(1l:2, :);
e2 = data(5:6, :) - data(3:4, :);
e3 = data(7:8, :) - data(5:6, :);
e4 = data(l:2, :) - data(7:8, :);
lenl = abs(sgrt(sumel .+ el, 1)) - sqrt(2));
I en2 = abs(sqgrt(sume2 .*> e2, 1)) - sqrt(2));
l en3 = abs(sqrt(sum(e3 .* e3, 1)) - sqrt(2));
I end = abs(sqrt(sumed .> e4, 1)) - sqrt(2));

% pl ot using standard |ine graph
pl ot (angles, lenl, 'r’, angles, len2, 'g,
angles, len3, 'b’, angles, lend4, '"m);

title(’ Magnitude of error in edge | engths over time’);
| egend(’ Edgel (p2-pl)’, ' Edge2 (p3-p2)’,

" Edge3 (p4-p3)’, 'Edged (pl-p4)’,

"Location’, 'NorthWest’);
set (get(gca, ' XLabel’), "String’, ’'lteration nunber’);
set(get(gca, 'YLabel'), "String , 'Magnitude of error’);

% set the second subpl ot region to be active
subplot (2, 2, 2);

% pl ot the sanme data, except in a polar plot
pol ar(radi ans, lenl, 'r’);
hol d on

pol ar (radi ans, len2, 'g);
pol ar (radians, len3, 'b");
pol ar(radi ans, lend, 'mi);

hol d of f
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title(’ Magnitude of error in edge lengths as a function of angle’);
| egend(’ Edgel (p2-pl)’, 'Edge2 (p3-p2)’,
"Edge3 (p4-p3)’, 'Edged (pl-p4d)’,
"Location’, 'SouthEast’);
set (get(gca, ' XLabel’), "String’, "Angle');
set(get(gca, 'YLabel'), "String , 'Magnitude of error’);

% set third subplot region to be active
subplot(2, 2, 3);

trueVals = zeros(8, nunfteps);

trans = (data(5, 1) + data(l1, 1))/2;

% conpute the rotation using double exact for
% the given settings

for i = 1:nuntteps
ant = i=*pi/180;
rotMat = [cos(am) -sin(ant) O; sin(ant) cos(ant) O0; 0, 0, 1];
affPts = [trans, trans-1, trans, trans+l;
trans+l, trans, trans-1, trans;
ones(1, 4)];
rotMat = [1, O, trans; 0, 1, trans; 0, 0, 1]

* ot Mat
* [1, 0, -trans; 0, 1, -trans; 0, 0, 1];
tnpPts = rotMatxaff Pt s;
truevals(:, i) = reshape(tmpPts(1l:2, :), 8, 1);
end

% Conput e di stance of each point from doubl e exact
% | ocati on

trueD1 data(1l: 2,
trueD2 dat a(3: 4,
truebD3 = data(5: 6,
trueD4 = data(7:8,

trueVal s(1: 2,
trueVval s(3: 4,
6,
8,

trueVval s(5:
trueVval s(7:

1
N— N N N
1

errD1
errD2
errD3
errbd4

sqrt(sumtrueDl .* trueD1,
sgrt(sun(trueD2 .* trueD2,
sqrt(sumtruebD3 .* trueD3,
sgrt(sun(trueD4 .+ truel4,

1));
1));
1));
1));

plot (angles, errDl, 'r’, angles, errD2, 'qg,
angles, errD3, "b', angles, errD4, "m);
title(sprintf([’  Magnitude of error in positions over tine\n’
[" (conmpared to double exact)’']));
| egend(’ P1’, "P2', "P3'", "P4, 'Location’, 'NorthWest’);
set (get(gca, 'XLabel’), "String’, ’'lIteration nunber’);
set(get(gca, 'YLabel'), "String , 'Magnitude of error’);
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% Cal cul ate dot product of each edge with subsequent
% edge (obtaining cosine of angle between themn

angl el = abs(sun(el .*x e2, 1));
angl e2 = abs(sun(e2 .* e3, 1));
angl e3 = abs(sun(e3d .*x e4, 1));
angl e4 = abs(sun(e4 .* el, 1));

subplot (2, 2, 4);
pl ot (angl es, anglel, 'r’, angles, angle2, 'g',
angl es, angle3, 'b’, angles, angle4, 'm);
title(sprintf([’ Magnitude of error in cos(angle)\n’...
" bet ween adj acent edges’]));

| egend(’ Edges 1-2 (p3-p2-pl)’, ’'Edges 2-3 (p4-p3-p2)’,

"Edges 3-4 (pl-p4-p3)’, 'Edges 4-1 (p2-pl-p4)’,

"Location’, ’NorthWst’);
set(get(gca, 'XLabel'), "String , 'lteration nunber’);
set (get(gca, 'YLabel’), "String’, 'Magnitude of error’);

Each figure consists of four plots of the error for a particgletting. The top left plot measures
the magnitude of the error in each of the four edge lengthd@kguare; that is, how much each
edge deviates from the expected valuey&f. The top right plot looks at the same data, except
organized as a polar plot by the total angle rotated. Thelokeft plot looks at how far each point
deviates from the exact double precision result, which cardnsidered to be the best possible
answer obtainable with the current options. Finally, théédwo right plot looks at the absolute value
of the cosine of the angle between each of neighboring edges angles should be preserved by a
rotation, the edges should remain perpendicular and scofieecof the angle (i.e. the dot product
of the two vectors) should be O.

The first thing we note is the general increasing trend in tirawative mode for both single and
double precision. For the time period analyzed, this groagpears to be roughly linear, with the
double precision result being abol@—? more accurate in the lengths and positions. We should
also note that the bottom right plot for single precisionegp to have an issue with the axes limits;
however when we inspected the data it turned out that theeasdithe angles was in fadtat all
points in time (i.e. no error). It is unknown precisely whystls the case; one possible explanation
is that since the points are symmetrical, they are travgrtia same sequence of available floating
point numbers, which could also explain why the error measium the lengths are the same for
all four edges. However, since we don’t see this behaviodfmrble precision, it bears further
investigating.

When we switch to exact mode at the origin, we can see that@mugnd trends in the error are lost.
This is unsurprising, as exact mode does not compound tbeserrade by previous steps, and so
we expect to see in general a relatively constant, smalbfageror. There are some periodic effects
present, possibly due to the repetition of the same angletiore.

When we move to single precision cumulative ab@@000, 10000), we see that the error is com-
pounded greatly, and visual artifacts are very appareng l@ihgths of edges change dramatically,
and the perpendicularity of neighboring edges is lost cetebl. This only gets worse as the point is
pushed further and further out, finally not moving at all a1 0000000, 10000000) (see Problem
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3 for more details). When we move to exact mode, single pregist (1000000, 1000000), there
are readily apparent visual artifacts, as the square jumgamd noticeably on screen. However,
because the error isn’'t cumulative, the square still sgitigit in a very erratic fashion. Moving to
double precision cumulative, we see that the expanded nuailiEts in the mantissa aids greatly
in this range, as the overall error is less than single pmtexact, and is below the range for visual
detection.

Problem 3 At about1e7 in single precision, the square stops rotating entirelywéf increase
this to about2e7” we see that the square seems to disappear entirely. Thissrmakse if we look
at the value of epsilon in single precision at these distatficen the origin; atle7, epsilon is 1.
This means that single precision is only capable of disisigng between integers at this point —
there is no room in the mantissa for any fractional value. Assalt, when we attempt to rotate
the square slightly all of the fractional information is tlaghen we translate back tde7, 1e7),
leaving the square stuck at its original integer amountd {ans not moving). At the larger value
of 2e7, epsilon is now 2, and there are not enough bits in the mantiseven distinguish between
neighboring integers. As a result, the four corners of oulasg end up at the same floating point
value, and the square has collapsed into a single point.

Problem 4 In general, we can expect that the error in our computati@aett step will be roughly
proportional to the value of epsilon at 1 in our chosen pregjssince in some sense that is a measure
of the amount of information we "lose” at each step. Lookinguar plots, we can see that single
precision cumulative at the origin has an error in lengthalwsut4.2e — 5 after 2500 iterations,

or about352.3 x epgsingle(1)). Similarly, for double precision cumulative at the origihe error

in lengths is about.le — 13 after 2500 iterations, or aboud5.4 x epg1). Given these, we can
generate a ballpark guess of the error introduced by hatigiom as somewhere inbetwegd) to

500 times epsghalf(1)), or about0.29 to 0.49. In general, though, this is just a back of the envelope
estimate, but it seems to indicate that we should expecta@sers aroun@.1 to 1 in magnitude,
which is a significant (and visually noticeable) amount eber
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Figure 1. Graphs of the output of the program in single presjscumulative rotations, about the
origin
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Figure 3: Graphs of the output of the program in single precjsexact rotations, about the origin
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Figure 4: Graphs of the output of the program in single piecjscumulative rotations, about the
point (100000, 100000)
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Figure 5: Graphs of the output of the program in single piegjsexact rotations, about the point
(1000000, 1000000)
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Figure 6: Graphs of the output of the program in double precjscumulative rotations, about the
point (1000000, 1000000)



