CS 322 Homework 2: Solutions

out: Thursday 1 February 2007
due: Wednesday 7 February 2007
Problem 1

We are given matrice® = [q1,qz2,qs] andP = [p1, p2, p3/, and we wish to find the matrik1

such thatMQ = P. This looks similar to a system of linear equations; however, it is in the wrong
form — we are used to solvingx = b where the unknown is in the middle, and in this problem

it is on the left. We can fix that by applying the transpose to our problem, obtaining the modified
system of equation@ TMT = PT. Now our unknown is where we need it to be to solve using the
algorithms we are accustomed to (in particular Gauss-Jordan elimination). We need to remember
that when we solve the system we are obtaining the transpose of the matrix we actually want, and
so once we've solved the system we need to apply the transpose to the solution in order to obtain
the matrixM we are interested in.

We note that this is in fact a multi-RHS system: our right hand side is a matrix and not a vector.
However, this does not make the problem any more difficult to solve; see the lecture notes on linear
systems for more details.

Problem 2

function transform = computeLinearTransformation(origPts, newPts)

A = origPts’;

B = newPts’;

n = size(A,1);

C =1[ABJ

for j = 1in
% Get indices of rows to update
r = [1;j-1 j+1:n];
% Update all other rows to zero out the j-th column
C(r,j-end) = C(rj:end) - C(r,) * C(j,j-end) / C(j.));
% Update the j-th row so that the j-th entry is one
C(,j-end) = C(,j:end) / C(.));

end

transform = C(:,n+1:end)’;



CS 322—HW?2 Solutions 2

There are a few things to note about this code. First, we compute the transpose, form the augmented
system, solve, and then apply the transpose again to get the matrix we need. Each iteration of our
loop updates all of the rows except the current one at once using the outer product. One way of
looking at the outer product is as multiple copies of a single row, each with a different scaling term
applied to it (where the scaling terms come from the column vector in the outer product). In this
case, we want to make multiple copies of the j-th row and scale each copy by the appropriate amount
to eliminate the j-th variable in all other rows, so we perform the outer product gttihheow with

the column vector containing the appropriate scale factors (which ar€jusj)/C(j,7)). The

second thing to note is that we use some of the advanced indexing available in MATLAB. We form
the vectorr, which is a row vector containing all integers from Lit@xcept forj. We can then use

it as an index into the matri&C — in essence we are using it to index every row but;ttle row.

Finally, we know that the firsf — 1 entries in the row we are working on are alredgynd so any
additions and scales involving those entries are unnecessary. Thus, we only have to transform the
entries in thej throughn-th columns of all rows; hence we operate on the colugnnend

Problem 3

One failure occurs when we take the bottom-left point on the left set of points and begin to slowly
drag itright. As we cross the center of the image, our algorithm will fail with MATLAB complaining
about a division by zero. This is symptomatic of a more general class of failures, ones in which the
C(y,7) entry at some iteration of the Gauss-Jordan algorithm becomes very close to zero. There
are other configurations of points that can cause the algorithm to fail on the second iteration, but the
configuration described above causes it to consistently fail on the first iteration because the point
in question is the first column of the matrix, and so #healue is iInC(1,1). By moving the point
towards the center, we movecloser to zero, and at the center of the image when we divide by
C(1,1) we are dividing by zero. This failure is fixed when we instead use the slash operator (or our
code in problem 4) because pivoting will cause the problematic element to be replaced by a larger
number.

Another failure occurs when we set all three points on the left in a straight line, or place two points
on top of each other. This is because our points are lgarly independentthat is, we can
express one point as some linear combination of the other two points. This means that the matrix
Q is rank deficient, and so its inverse does not exist, and so the problem has no meaningful single
solution. This failure is1ot fixed when we use the slash operator, because the failure is inherent to
the problem — we are asking an ill-posed question without a meaningful answer, and so the slash
operator will still fail to find a solution.



CS 322—HW?2 Solutions 3

Problem 4

function transform = computeLinearTransformation(origPts, newPts)

A = origPts’;

B = newPts’;

n = size(A,1);

C = [A BJ
permuteM = 1:n;
for j = 1in

% find pivot element
[scale, ind] = max(abs(C(permuteM(j:n), j)));

% set new pivot as the j-th row of our permutation
permuteM([j j-1+ind]) = permuteM([j-1+ind j]);

% generate list of all indices to update (everyone but the
% current pivot)
r = [permuteM(1:j-1) permuteM(j+1:n)];

% Zero out every other entry in this column by adding a

% scalar multiple of the pivot row

C(rj:end) = C(r,j;end) - C(r,)) * oL
C(permuteM(j),j:end) / C(permuteM()),));

% Scale pivot row so diagonal entry is 1
C(permuteM(j),j:end) = C(permuteM(j),j:end) / C(permuteM(j),));
end

% Return transform matrix reordered by our permutation
transform = C(permuteM,n+1:.end)’;

One approach for pivoting is to physically swap the rows in memory. While that was an acceptable
solution that got full credit, we have chosen to show another way of using MATLAB indexing to
achieve greater performance. Rather than swapping the rows directly, we keep a list of what swaps
we have made in thpermuteList vector. Thei-th entry inpermuteM indicates what row in the
original matrix is currently swapped into tleh row of the permuted matrix. We usgax andabs

to find the index of the largest entry in the remaining columns and upeatsuteM to specify that

we want to swap that row into theth row. Then, we uspermuteM just like we used- before —

as an index into what rows we want to update. Thus, the swaps are done automatically (and without
copying) by MATLAB; by accessing them in a permuted order, MATLAB will return them in a
permuted order, and it is as if we performed the permutations ourselves. For large matrices this can
be more efficient since the swap never actually takes place.



