CS 322 Homework 1

out: Thursday 25 January 2007

due: Wednesday 31 January 2007

Consider the matrix-matrix product:

$$
\mathbf{M}=\mathbf{A B}
$$

where \mathbf{M} is $m \times n, \mathbf{A}$ is $m \times p$, and \mathbf{B} is $p \times n$. Here is a picture:

One way of writing the definition of this is

$$
\begin{equation*}
m_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j} \quad \text { for } i=1 \ldots m \text { and } j=1 \ldots n \tag{1}
\end{equation*}
$$

This corresponds to the mATLAB function:

```
M = multiply (A, B)
\(\mathrm{M}=\operatorname{zeros}(\mathrm{m}, \mathrm{n})\);
for \(i=1: m\)
    for \(j=1: n\)
        for \(k=1: p\)
            \(M(i, j)=M(i, j)+A(i, k) * B(k, j) ;\)
        end
    end
end
```

Instead of doing it this way, we could interpret the sum in (1) as a dot product between a row of A and a column of B. Let's introduce MATLAB-inspired names for the rows and
columns:

$$
\mathbf{A}=\left[\begin{array}{c}
-\mathbf{a}_{1:}- \\
\vdots \\
-\mathbf{a}_{m:}-
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{b}_{: 1} & \cdots & \mathbf{b}_{: n} \\
\mid & & \mid
\end{array}\right] .
$$

Now we can express elements of \mathbf{M} more concisely:

$$
\begin{equation*}
m_{i j}=\mathbf{a}_{i:} \cdot \mathbf{b}_{: j} \quad \text { for } i=1 \ldots m \text { and } j=1 \ldots n . \tag{2}
\end{equation*}
$$

Or, in the same way we did in lecture, we can think of a column vector made up of dot products like this as a matrix product:

$$
\begin{equation*}
m_{: j}=\mathbf{A} \mathbf{b}_{: j} \quad \text { for } j=1 \ldots n . \tag{3}
\end{equation*}
$$

Problem 1: Find two more ways to express M using operations that operate on one vector at a time (dot products, vector addition, etc.) and write them down as equations similar to (2). Write up all three as matlab functions that each contain two nested loops.

Problem 2: Find two more ways to express \mathbf{M} using operations that operate on a matrix at a time (Matrix-vector products, matrix addition, etc.) and write them down as equations similar to (3). Write up all three as matlab functions that each contain a single loop.

Print out your code and turn it in, with your equations, in lecture on the due date.

