Matlab Functions for Final Exam

polyfit

P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of degree N that fits the
data Y best in a least-squares sense. P is a row vector of length N+1 containing the
polynomial coefficients in descending powers, P(1)*X^N + P(2)*X^(N-1)+...+P(N)*X + P(N+1).

polyval

Y = POLYVAL(P,X) returns the value of a polynomial P evaluated at X. P is a vector of
length N+1 whose elements are the coefficients of the polynomial in descending powers,
Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)

spline

PP = SPLINE(X,Y) provides the piecewise polynomial form of the cubic spline interpolant to
the data values Y at the data sites X, for use with the evaluator PPVAL and the spline
utility UNMKPP. X must be a vector. If Y is a vector, then Y(j) is taken as the value to
be matched at X(j).

ppval

V = PPVAL(PP,XX) returns the value, at the entries of XX, of the piecewise polynomial f
contained in PP.

mkpp

PP = MKPP(BREAKS,COEFS) puts together a piecewise polynomial PP from its breaks and
coefficients. BREAKS must be a vector of length L+1 with strictly increasing elements
representing the start and end of each of L intervals. The matrix COEFS must be L-by-K,
with the i-th row, COEFS(i,:), representing the local coefficients of the order K
polynomial on the interval [BREAKS(i) ... BREAKS(i+1)], i.e., the polynomial
COEFS(i,1)*(X-BREAKS(i))^(K-1) + COEFS(i,2)*(X-BREAKS(i))^(K-2) + ... +
COEFS(i,K-1)*(X-BREAKS(i)) + COEFS(i,K).

unmkpp

[BREAKS,COEFS,L,K] = UNMKPP(PP) extracts from the piecewise polynomial PP its breaks,
coefficients, number of pieces, and order.
fzero

Suppose \(f(x,P_1,P_2,...) \) is a continuous function of the scalar \(x \) with parameters \(P_1, P_2,... \). If \(f \) changes sign on the interval \([L,R]\), then
\[
z = \text{fzero}(@f,[L,R],[],P_1,P_2,...)
\]
assigns to the variable \(z \) a zero of the function \(f \). The parameters \(P_1, P_2,... \) must be assigned values before the call.

fminbnd

Suppose \(f(x,P_1,P_2,...) \) is a continuous function of the scalar \(x \) with parameters \(P_1, P_2,... \). If \(f \) is defined on the interval \([L,R]\), then
\[
xstar = \text{fminbnd}(\@x) f(x,P_1,P_2,...),L,R)
\]
assigns to the variable \(xstar \) an approximate minimizer of \(f \) on the interval \([L,R]\). The parameters \(P_1, P_2,... \) must be assigned values before the call.

fminsearch

Suppose \(f(x,P_1,P_2,...) \) is a continuous function of the vector \(x \) with parameters \(P_1, P_2,... \). If \(f \) is defined in a neighborhood of \(x_0 \), then
\[
xstar = \text{fminbnd}(\@x) f(x,P_1,P_2,...),x_0)
\]
assigns to the variable \(xstar \) an approximate minimizer of \(f \) in the vicinity of \(x_0 \). The parameters \(P_1, P_2,... \) must be assigned values before the call.

quad

Suppose \(f(x,P_1,P_2,...) \) is a continuous function of the scalar \(x \) with parameters \(P_1, P_2,... \). If \(f \) is defined on the interval \([a,b]\), then
\[
Q = \text{quad}(\@x) f(x,P_1,P_2,...),a,b,tol)
\]
assigns to the variable \(Q \) an approximation of the integral of \(f \) from \(a \) to \(b \). The absolute error of is usually in the vicinity of \(tol \). The parameters \(P_1, P_2,... \) must be assigned values before the call.

Backslash “\"\"

If \(A \) is square and nonsingular, then
\[
x = A\backslash b
\]
 solves the linear system \(Ax = b \).
If \(A \) is square, nonsingular, and triangular, then
\[
x = A\backslash b
\]
 solves \(Ax = b \) in \(O(n^2) \) flops.
If \(A \) has more rows than columns, then
\[
x = A\backslash b
\]
 solves the least squares problem
\[
\min \| Ax - b \|_2.
\]

LU

If \(A \) is an \(n \)-by-\(n \) matrix, then
\[
[L,U,P] = \text{LU}(A)
\]
produces a unit lower triangular matrix \(L \), upper triangular matrix \(U \), and permutation matrix \(P \) so that \(P*A = L*U \).

CHOL

If \(X \) is positive definite, then
\[
R = \text{CHOL}(X)
\]
produces an upper triangular \(R \) so that \(R'*R = X \).

QR

\(A \) is \(m \)-by-\(n \), then
\[
[Q,R] = \text{QR}(A)
\]
produces an \(m \)-by-\(n \) upper triangular matrix \(R \) and an \(m \)-by-\(m \) orthogonal matrix \(Q \) so that \(A = Q*R \).

SVD

Singular value decomposition. \([U,S,V] = \text{SVD}(X) \) produces a diagonal matrix \(S \), of the same dimension as \(X \) and with nonnegative diagonal elements in decreasing order, and orthogonal matrices \(U \) and \(V \) so that \(X = U*S*V' \).