Problem set 5
Due Friday, July 30 at 1:00 pm

Question 1 (30 points) Sparse QR factorization. If $A \in \mathbb{R}^{m \times n}$ is almost upper triangular (i.e. there are not very many non-zero sub-diagonal elements) Givens rotations can be selectively applied to zero the sub-diagonal entries. Suppose vectors r and p store the row and column of the non-zero sub-diagonal entries of A. In particular, entry $(r(i), p(i))$ of A is nonzero for $i = 1 : k$ where k is the length of r and p. Write a matlab function SparseQR(A, r, p) that returns the upper triangular matrix R in the QR factorization of A and vectors c, s in \mathbb{R}^k where $(c(i), s(i))$ are the c and s used in the Givens rotation zeroing $A(r(i), c(i))$. In this way the vectors c and s represent the orthogonal matrix Q in the QR factorization. You may assume that input vector p satisfies $p(1) \leq p(2) \leq \ldots \leq p(k)$. Efficiency matters. (Note that A could be more efficiently stored, but you may assume it is stored as a full $m \times n$ matrix.) Hand in a print out of your matlab code and email a copy to gunsri@cs.cornell.edu

Question 2 (20 points) Consider the vectors c and s representing the Givens rotations applied to matrix A in question 1. Write a matlab function SparseQMult(c, s, r, p, b) that returns Qb, where Q is the orthogonal matrix represented by c, s. Make sure to return Qb and not Q^Tb. Efficiency matters. Hand in a print out of your matlab code and email a copy to gunsri@cs.cornell.edu

Question 3 (25 points) Let $a \in \mathbb{R}^n$ be considered as an $n \times 1$ matrix. Write out the QR factorization of a showing the matrix R explicitly and either give a formula for the matrix Q or show each element explicitly (you can do this factorization in one step if you use a Householder transformation.) What is the solution to the linear least squares problem $ax \approx b$ where b is a given n-vector? Show that the columns of Q are an orthonormal basis for \mathbb{R}^n and that $\frac{a}{\|a\|_2}$ is one of the basis vectors. This is an efficient way to build an orthonormal basis for \mathbb{R}^n from an initial basis vector a.

Question 4 (10 points) If $A \in \mathbb{R}^{n \times n}$ is positive definite and $X \in \mathbb{R}^{n \times k}$ has rank k, prove that X^TAX is positive definite.

Question 5 (15 points) If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, prove that $|A(i, j)| \leq (A(i, i) + A(j, j))/2$. Hint: first establish the two inequalities $A(i, i) - 2A(i, j) + A(j, j) \geq 0$ and $A(i, i) + 2A(i, j) + A(j, j) \geq 0$.

1