CS 322: Prelim 1 Solution Guide

$95-100$	
$90-94$	
xxxxxxxxxx	
$85-89$	xxxxxxxxxxxx
$80-84$	xxxxxxxxxxxxxx
$75-79$	xxxxxxxxxxxxxxxxxxxxxxxxxxx
$70-74$	xxxxxxxxxxxxxxxxxxxxxxx
$65-69$	xxxxxxxxxxxxxxxxxxxxxxxxxxx
$60-64$	xxxxxxxxxxxxxxxxxxxxxxxxxxx
$55-59$	xxxxxxxxxxxxxxxx
$50-54$	xxxxxxxxxx
$45-49$	xxx
$40-44$	xxxxxxxx
<40	xxx

Median $=69$. Rough Grade Guidelines: $\mathrm{A}=[80,100], \mathrm{B}=[65,75], \mathrm{C}=[50,60]$

1. Assume that x and y are given column vectors and that the command $\operatorname{plot}(x, y)$ results in the display of the first-quadrant portion of the ellipse

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

Without any sine, cosine, or, square root computations, show how to plot the entire ellipse

$$
\left(\frac{x-h}{a}\right)^{2}+\left(\frac{y-k}{b}\right)^{2}=1
$$

assuming that $\mathrm{h}, \mathrm{k}, \mathrm{x}$, and y are given. Do not worry about axis scaling. You may use hold. Express your solution in the form of a MATLAB script.

```
plot(x+h,y+k)
hold on
plot(-x+h,y+k)
plot(-x+h, -y+k)
plot(x+h,-y+k)
hold off
Or:
x = [x;-x;-x;x];
y = [y;y;-y;-y];
%plot(x,y) now would do the ellipse centered at (0,0)
plot(x+h,y+k)
    -5 if plot with -h and -k
    -3 if plot with some +h (or k) and some -h (or k)
    -2 if hold missing
    -10 if plot correctly at (0,0)
    -3 if fail to plot one quadrant
```

2. (a) (10 points) Assume that $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{n \times n}$ are stored in n-by- n arrays A and C and that $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ are stored in n-by- 1 arrays x and y . Write a Matlab 1 -liner that efficiently evaluates $z=x y^{T} A C$ and assigns the result to z .
```
% There are three operations and 5 possible algorithms:
z = ((x*y')*A)*C % This is O(n^3) and the same as z = x*y'*A*C 4 points for this
z = (x*y')*(A*C) % This is O(n^3) 4 points for this
z=(x*(y'*A))*C % This is O(n^3) 7 points for this
z=x*((y'*A)*C) % This is O(n^2) }10\mathrm{ points for this
z = x*(y'*(A*C)) % This is O(n^3) 4 points for this
```

If the wrong answer was calculated (i.e. ($\mathrm{A} * \mathrm{x}$) ' $(\mathrm{C} * \mathrm{y})$ calculation), then 2 further points were deducted. No points were deducted for failing to use correct Matlab syntax.
(b) (10 points) Suppose we are given the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $n \geq 3$ and x_{1}, \ldots, x_{n} distinct. Assume that q and r are degree $n-2$ polynomials with the property that

$$
\begin{array}{rl}
q\left(x_{i}\right)=y_{i} & i=1: n-1 \\
r\left(x_{i}\right)=y_{i} & i=2: n
\end{array}
$$

Determine real numbers a and b so that $p(x)=a\left(x-x_{n}\right) q(x)+b\left(x-x_{1}\right) r(x)$ interpolates $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. It must be clear from your answer that p interpolates all n points.

Since $y_{1}=p\left(x_{1}\right)=a\left(x_{1}-x_{n}\right) q\left(x_{1}\right)=a\left(x_{1}-x_{n}\right) y_{1}$ we must have $a=1 /\left(x_{1}-x_{n}\right)$.
Since $y_{n}=p\left(x_{n}\right)=b\left(x_{n}-x_{1}\right) r\left(x_{1}\right)=b\left(x_{n}-x_{1}\right) y_{n}$ we must have $b=1 /\left(x_{n}-x_{1}\right)$. Thus,

$$
p(x)=\frac{\left(x-x_{n}\right) q(x)-\left(x-x_{1}\right) r(x)}{x_{1}-x_{n}}
$$

For $i=2: n-1$ we have

$$
p\left(x_{i}\right)=\frac{\left(x_{i}-x_{n}\right) q\left(x_{i}\right)-\left(x_{i}-x_{1}\right) r\left(x_{i}\right)}{x_{1}-x_{n}}=y_{i} \frac{\left(x_{i}-x_{n}\right)-\left(x_{i}-x_{1}\right)}{x_{1}-x_{n}}=y_{i}
$$

3 points for getting the correct answer for $a\left(=1 /\left(x_{1}-x_{n}\right)\right)$
3 points for getting the correct answer for $b\left(=1 /\left(x_{n}-x_{1}\right)\right)$
3 points for showing $p\left(x_{i}\right)=y_{i}$
1 point for correctly stating the limitations on i when showing $p\left(x_{i}\right)=y_{i}$ (i.e. the algebra only holds for $i=2: n-1$)
9 points maximum were given for a solution where a system of linear equations were presented. To get all 9 points, the student had to present the correct system of linear equations, and actually give some of the matrix equations
3. (a) (10 points) Assume that x, y, and z are consecutive positive floating point numbers with $x<y<z$. If $(x+z) / 2=y+1 / 64$ in exact arithmetic then what is the value of $y-x$ in exact arithmetic? Hint: the spacing between x and y is not the same as the spacing between y and z.

Assume that $y=x+d$, i.e., d is the spacing between x and y. Since the average of x and z is bigger than y, we must have $z=y+2 d=x+3 d$. Thus, $y+1 / 64=(x+z) / 2=x+(3 / 2) d=y+d / 2$. Thus, $d=1 / 32=y-x$.

3 points for recognizing that spacing between y and z is twice the spacing between x and y.
(b) (10 points) $S(x)$ is the not-a-knot cubic spline interpolant of the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{4}, y_{4}\right)$ with $x_{1}<x_{2}<x_{3}<x_{4}$. Assume that

$$
S(x)= \begin{cases}p_{1}(x)=c_{11}\left(x-x_{1}\right)^{3}+c_{12}\left(x-x_{1}\right)^{2}+c_{13}\left(x-x_{1}\right)+c_{14} & \text { if } x_{1} \leq x \leq x_{2} \\ p_{2}(x)=c_{21}\left(x-x_{2}\right)^{3}+c_{22}\left(x-x_{2}\right)^{2}+c_{23}\left(x-x_{2}\right)+c_{24} & \text { if } x_{2} \leq x \leq x_{3} \\ p_{3}(x)=c_{31}\left(x-x_{3}\right)^{3}+c_{32}\left(x-x_{3}\right)^{2}+c_{33}\left(x-x_{3}\right)+c_{34} & \text { if } x_{3} \leq x \leq x_{4}\end{cases}
$$

Explain why $c_{11}=c_{21}=c_{31}$.
For the not-a-knot spline, $p_{1}^{\prime \prime \prime}\left(x_{2}\right)=p_{2}^{\prime \prime \prime}\left(x_{2}\right)$ and so $6 c_{1}=6 c_{2}$. Likewise, $p_{2}^{\prime \prime \prime}\left(x_{3}\right)=p_{3}^{\prime \prime \prime}\left(x_{3}\right)$ and so $6 c_{2}=6 c_{3}$.
-2 if you don't correctly differentiate the cubics three times
-1 confusing $\mathrm{f} "$ ' and s "'
3 pts for understanding that s , s ' and $\mathrm{s} "$ are all continuous.
4. Suppose $f(x)$ is always positive with the property that $f(-x)=f(x)$ for all x. How would you compute

$$
I=\int_{-a}^{b} f(x) d x \quad 0<a<b
$$

with relative error 10^{-6} or less? Make effective use of QUAD. Assume that the function f is implemented in $\mathrm{f} . \mathrm{m}$ and recall that if numI $=\operatorname{QUAD}(' f$ ', $\mathrm{L}, \mathrm{R}, \mathrm{tol}$), then we (usually) have

$$
\mid \text { num }-\int_{L}^{R} f(x) d x \mid \leq \text { tol } \cdot \int_{L}^{R} f(x) d x
$$

express your answer in the form of a Matlab script and explain why your choice of the tolerances works.

Since

$$
I=\int_{-a}^{b} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x+\int_{a}^{b} f(x) d x=2 \int_{0}^{a} f(x) d x+\int_{a}^{b} f(x) d x
$$

numI $=2 * \operatorname{QUAD}(' f$ ', $0, \mathrm{a}, \mathrm{tol} 1)+\operatorname{QUAD}(' \mathrm{f}$ ', $\mathrm{a}, \mathrm{b}, \mathrm{tol2})$

$$
\begin{aligned}
|I-\operatorname{num} \mathrm{I}| & =\left|\left(2 \int_{0}^{a} f(x) d x-2 \operatorname{QUAD}\left('^{\prime}, 0, \mathrm{a}, \mathrm{tol} 1\right)\right)+\left(\int_{a}^{b} f(x) d x-\operatorname{QUAD}\left({ }^{\prime} \mathrm{F}^{\prime}, \mathrm{a}, \mathrm{~b}, \mathrm{tol} 2\right)\right)\right| \\
& \leq 2 \mathrm{tol1} \int_{0}^{a} f(x) d x+\mathrm{tol2} \int_{a}^{b} f(x) d x
\end{aligned}
$$

Note that by setting toll $=$ tol2 $=$ tol $=10^{-8}$ we obtain the required result:

$$
|I-\operatorname{numI}| \leq \operatorname{tol} \int_{-a}^{b} f(x) d x
$$

matlab script:
+14 for numI $=2^{*}$ quad('f', $0, \mathrm{a}$, tol1 $)+$ quad('f' $\left.{ }^{\prime}, \mathrm{a}, \mathrm{b}, \mathrm{tol} 2\right)$
+12 if use \min / \max to determine if $\mathrm{a} j \mathrm{~b}$ or bja (given in problem statement) and everything else with above line is correct
explanation:
+3 correct argument
+3 correct reasoning
5. The 2-point Gauss-Legendre rule is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

where

$$
\begin{aligned}
& x_{1}=\frac{a+b}{2}-\frac{b-a}{2 \sqrt{3}} \\
& x_{2}=\frac{a+b}{2}+\frac{b-a}{2 \sqrt{3}}
\end{aligned}
$$

Complete the following function so that it performs as specified

```
    function alfa = SectorArea(A,P,theta)
% A and P are scalars with A >= P > 0 and theta is a column n-vector
% with n > 2 and theta(1) < theta(2) < ... < theta(n).
%
% alfa is a column (n-1)-vector with the property that for k=1:n-1
% alfa(k) is the 2-point Gauss-Legendre approximation of the integral
% of the function f(x) from x = theta(k) to x = theta(k+1) where
%f(x)=.5(A*P/( P* (1-cos(x)) + A*(1 + cos(x)) ) ) ^2.
```

Vectorize and avoid redundant computation.

```
u = (theta(1:n-1) + theta(2:n))/2; % 4pts
v = (theta(2:n) - theta(1:n-1))/(2*sqrt(3)); % 4 pts
x1 = u - v; f1 = . 5* (A*P./(P+A+(A-P)* cos(x1))).^2; % % pts
x2 = u + v; f2 = . 5* (A*P./(P+A+(A-P)* cos(x2))). ' 2; % 3 pts
alfa = (theta(2:n) - theta(1:n-1)).*(f1 + f2)/2 % 6pts
```

It is possible to combine the u and v steps and the $f 1$ and $f 2$ steps, but not required for full credit

