CS 322: Prelim 2 Review Solutions

1. Gaussian elimination with pivoting is used to solve a 2×2 system $Ax = b$ on a computer with machine precision 10^{-10}. Suppose

$$A = \begin{bmatrix} .780 & .563 \\ .913 & .639 \end{bmatrix}$$

The inverse of this matrix is

$$A^{-1} = \begin{bmatrix} 659000 & -563000 \\ -913000 & 780000 \end{bmatrix}$$

It is known that the exact solution is given by

$$x = \begin{bmatrix} 1.234567890123456 \\ 0.0000123456789012 \end{bmatrix}.$$

Underline the digits in x_1 and x_2 that can probably agree with the corresponding digits in the computed solution. Explain the heuristic assumptions used to answer the question.

Solution

The 1-norm condition is about 10^6 since $\|A\|_1 = 1.572$ and $\|A^{-1}\|_1 = 1572000$. So from the heuristic

$$\frac{\|x - x^*\|_1}{\|x\|_1} \approx \text{eps} \kappa_1(A) \approx 10^{-10}$$

we see that $|\hat{x}_1 - x_1| + |\hat{x}_2 - x_2| \approx 10^{-10}$. Beyond the ninth or tenth decimal place things cannot be trusted in either \hat{x}_1 or \hat{x}_2.

2. Suppose (x_1, y_1) and (x_2, y_2) are distinct and that $g(x, y)$ is a continuous function. We want to use `fzero` to find t, such that if

$$x_* = x_1 + t (x_2 - x_1)$$
$$y_* = y_1 + t (y_2 - y_1)$$

then

$$g(x_*, y_*) = (g(x_1, y_1) + g(x_2, y_2))/2$$

Give an implementation of the function that you would pass to `fzero` and the initial bracketing interval that you would use. Explain why your bracketing interval includes a solution to the problem. You may assume that an implementation $g(x,y)$ of the function g is available. Assume also that the points (x_1, y_1) and (x_2, y_2) are represented with the 2-vectors x and y.

Solution

```matlab
function y = f(t, ave, x, y)
    % t a scalar and ave = (g(x(1),y(1)) + g(x(2),y(2)))/2
    f(t) = g(x(1) + t*(x(2)-x(1)), y(1) + (y(2)-y(1))) - ave;

[0.1] is a bracketing interval because $f(0) = g(x_1, y_1) - g(x_2, y_2)$ and $f(1) = g(x_2, y_2) - g(x_1, x_2)$. Hence, $f(0)f(1) \leq 0$.
```
3. The function

```matlab
function v = fitPlane(x, y, z)
    % x, y, z are column n-vectors
    % v is a unit column 3-vector with the property that
    % [x(1) y(1) z(1)]' * v'^2 + ... + [x(n) y(n) z(n)]' * v'^2
    % is minimized.
```
returns the unit normal of the plane through the origin that best fits the data in the least squares sense. (Recall that \(|x_1v_1 + y_1v_2 + z_1v_3| \) is the distance from the point \((x_i, y_i, z_i)\) to the plane.) Implement a function

```matlab
function v = fitGeneralPlane(x, y, z, x0, y0, z0)
    % v is a unit column 3-vector with the property that
    % [x(1) y(1) z(1)]' * v'^2 + ... + [x(n) y(n) z(n)]' * v'^2
    % is minimized.
```
that returns the unit normal of the plane though \((x_0, y_0, z_0)\) that best fits the data in the least squares sense. Assume that \(x_0, y_0, \) and \(z_0\) are scalars. Hint: Does the unit normal change if we translate the data set?

Solution

\(|(x_i - x_0)v_1 + (y_i - y_0)v_2 + (z_i - z_0)v_3| \) is the distance from the point \((x_i, y_i, z_i)\) to the plane that passes through \((x_0, y_0, z_0)\) and has unit normal \(v\). It follows that we want to choose \(v\) so that sum of the squares of these quantities is minimized. So just translate all the data points so that \((x_0, y_0, z_0)\) corresponds to the origin.

```matlab
function v = fitGeneralPlane(x, y, z, x0, y0, z0)
    v = fitPlane(x-x0, y-y0, z-z0);
```

4. One way of fitting the data \((t_1, f_1), \ldots, (t_m, f_m)\) with a polynomial \(p(x) = a_1 + a_2x + \cdots + a_mx^{m-1}\) is to minimize

\[
\phi(a) = \sum_{i=1}^{m} (p(t_i) - f_i)^2 + \mu \sum_{i=1}^{m} p''(t_i)^2
\]

where \(\mu\) is a scalar. The larger the value of \(\mu\) the less nonlinear will be the optimum fitting polynomial.

Complete the following MATLAB function so that it performs as specified.

```matlab
function a = LSCubic(t, f, mu)
    % t and f are column n-vectors and and n>=4,
    % a is a column 4-vector with the property that if
    %
    % \[
    % p(x) = a(1) + a(2)x + a(3)x^2 + a(4)x^3
    % \]
    %
    % then
    %
    % \[
    % (p(t(1)) - f(1))^2 + \ldots + (p(t(m)) - f(m))^2 + \mu \sum_{i=1}^{m} \cdot (t(i))^2\]
    %
    % is minimized.
```

Hint. Any sum of squares is the square of the 2-norm of some vector \(r\). In this case \(r = Ca - g\) where \(C\) is \(2m\)-by-4 and \(g\) is \(2m\)-by-1.
Solution

For \(m = 5 \) want to minimize the 2-norm of the vector

\[
\begin{bmatrix}
1 & t_1 & t_1^2 & t_1^3 & t_1^4 \\
1 & t_2 & t_2^2 & t_2^3 & t_2^4 \\
1 & t_3 & t_3^2 & t_3^3 & t_3^4 \\
1 & t_4 & t_4^2 & t_4^3 & t_4^4 \\
1 & t_5 & t_5^2 & t_5^3 & t_5^4
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5
\end{bmatrix}
- \begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5
\end{bmatrix}
\]

so in general we do this:

\[
m = \text{length}(f);
C = [\text{ones}(m,1) \ t \ t^2 \ t^3 \ \text{zeros}(m,1) \ \text{zeros}(m,1) \ 2*mu*\text{ones}(m,1) \ 6*mu*t];
g = [f \ \text{zeros}(m,1)];
a = C\text{\backslash}g;
\]

5. Suppose \(A \) is a given \(n \)-by-\(n \) nonsingular matrix. To compute \(A \)'s LU factorization we start by adding multiples of the first row to rows 2 through \(n \). The multiples are chosen so as to zero components \((2,1), \ldots, (n,2)\).
(a) Write a MATLAB script that does this. (b) Approximately how many flops are required? (c) Explain in English how pivoting changes this step.

Solution

(a)

\[
m(2:n) = A(2:n)/A(1,1);
\]

\text{for i =2:n}

\[A(i,:) = A(i,:) - m(i)*A(1,:);\]
\text{end}

(b) Each time through the loop we have a length \(n \) vector operation of the form "vector gets vector plus multiple of another vector". Each of these is about \(2n \) flops so about \(2n^2 \) flops altogether. (c) Pivoting addresses the worry that \(A(1,1) \) is small or zero. So before this script is executed we go into the \(A \)-array and swap row 1 with row \(q \) where \(a(q,1) \) has the largest absolute value of any entry in \(A(:,1) \).
6. Complete the following MATLAB function:

```matlab
function x = F(d,a,b)

% d is a column n-vector.
% a is a column 4-vector.
% b is a column n-vector.
% x is a column n-vector that solves Mx = b where

% M = a(1)*I + a(2)*D + a(3)*D^2 + a(4)*D^3

% where I is the n-by-n identity matrix and D is the n-by-n diagonal matrix with D(i,i) = d(i), i=1:n.

Solution

Note that $M = (m_{ij})$ is diagonal and so

$$m_{ij} = a_1 + a_2 d_i + a_3 d_i^2 + a_4 d_i^3$$

Since $Mx = b$ means $x_i = b_i / m_{ii}, i = 1:n$, we obtain

```matlab
n = length(b); x = zeros(n,1)
for i=1:n
 x(i) = b(i)/(a(1) + a(2)*d(i) + a(3)*d(i)^2 + a(4)*d(i)^3)
end
```

% or

```matlab
x = b./(a(1) + a(2)*d + a(3)*d.^2 + a(4)*d.^3);
```

% or

```matlab
x = b./((a(4)*d + a(3)).*d + a(2)).*d + a(1));
```