CS 322: Prelim 2 Solution Guide

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-100</td>
<td>xxx</td>
</tr>
<tr>
<td>90-94</td>
<td>xxx</td>
</tr>
<tr>
<td>85-89</td>
<td>xxx</td>
</tr>
<tr>
<td>80-84</td>
<td>xxx</td>
</tr>
<tr>
<td>75-79</td>
<td>xxx</td>
</tr>
<tr>
<td>70-74</td>
<td>xxx</td>
</tr>
<tr>
<td>65-69</td>
<td>xxx</td>
</tr>
<tr>
<td>60-64</td>
<td>xxx</td>
</tr>
<tr>
<td>55-59</td>
<td>xxx</td>
</tr>
<tr>
<td>50-54</td>
<td>xxx</td>
</tr>
<tr>
<td>45-49</td>
<td>xxx</td>
</tr>
<tr>
<td>40-44</td>
<td>xxx</td>
</tr>
<tr>
<td>35-39</td>
<td>xxx</td>
</tr>
<tr>
<td>30-34</td>
<td>xx</td>
</tr>
<tr>
<td>< 30</td>
<td>xxx</td>
</tr>
</tbody>
</table>

A = [80,100], B = [55,75], C = [40,55]. Median around 66.
1. The MATLAB function $[L, U, P] = LU(A)$ computes the factorization $PA = LU$ where L is unit lower triangular, U is upper triangular, and P is a permutation matrix. (A unit lower triangular matrix has ones along its diagonal.)

(a) (10 points) If A is unit lower triangular does it follow that U is the identity matrix? Explain.

No.

$$
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
2 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
5 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\
0 & -5
\end{bmatrix}
$$

(b) (10 points) What does it mean geometrically if a 2-by-2 linear system is poorly conditioned?

The two lines are nearly parallel.

Question 1a:

+10 – Anything that mentions pivoting or that PA is not lower triangular gets full credit.

+5 – NO for the wrong reason (as long as it’s not a completely off base answer (like it depends on whether we compute L or U first.))

+2 – $L =$ multipliers, $U =$ parameters.

+0 – YES for any reason whatsoever.

Question 1b:

+10 – almost parallel lines, parallel lines, almost the same line, vectors don’t do a good job of spanning the plane, unit circle gets mapped to long, skinny ellipse by A, intersection of the two lines changes a lot due to sensitivity arguments

+5 – inconsistent system that cannot be represented geometrically

+3 – nearly singular/singular matrix

+2 – large condition number

+0 – not singular, small condition number, small values in $A(1,1)$, operations have to be performed efficiently, pivots are in bad spot for pivoting
2. Complete the following function so that it performs as specified

 function [a,b] = SinCosFit(x,y)
 % x and y are column m-vectors and m is a positive integer with 6<m.
 %
 % a and b are column 3-vectors with the property that if
 %
 % f(z) = a(1)*sin(z) + a(2)*sin(2*z) + a(3)*sin(3*z) +
 % b(1)*cos(z) + b(2)*cos(2*z) + b(3)*cos(3*z)
 %
 % then (f(x(1)) - y(1))^2 + ... + (f(x(m)) - y(m))^2 is minimized.

You may use \. Your implementation should be vectorized.

 m = length(x);
 A = zeros(m,6);
 for k=1:3
 A(:,k) = sin(k*x);
 A(:,k+3) = cos(k*x);
 end
 c = A\y;
 a = c(1:3); b = c(4:6);

+4 setting up sine entries of coef. matrix
+4 setting up cosine entries of coef. matrix
+4 solving linear system properly using \
+4 setting of a
+4 setting of b

Misc.

-3 if linear system numerator something other than y
-2 if sine/cosine where evaluated at (x-y) rather than x
-2 y\A instead of A\y
-2 if used A*A stuff
-2 used more than one for-loops
3. (a) (10 points) Determine a 4-by-4 lower triangular matrix G so that

$$GG^T = \begin{bmatrix} 4 & 0 & 0 & 6 \\ 0 & 9 & 0 & 15 \\ 0 & 0 & 1 & 7 \\ 6 & 15 & 7 & 100 \end{bmatrix}$$

$$G = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 5 & 7 & \sqrt{17} \end{bmatrix}$$

(b) (10 points) Complete the following function so that it performs as specified

```matlab
function z = Cholm(A)
    % A is an n-by-n symmetric positive definite matrix with the property that
    % A(1:n-1,1:n-1) is diagonal.
    % z = G(n,n) where G is an n-by-n lower triangular matrix such that A = G*G'.
    % Your solution should vectorized and efficient. You are not allowed to use chol or any other function that
    % computes the Cholesky factorization. Note if C is a matrix then diag(C) is a row vector made up of its
diagonal entries.

d = diag(A(1:n-1,1:n-1));
v = A(n,1:n-1)./sqrt(d);
z = sqrt(A(n,n)-v*v')
```

A:

+2 for each of the first three columns of G
+4 for last column of G

Misc.

-2 G(4,4) wrong but show work
-3 G(4,4) wrong because something else (i.e., G(4,3)) wrong

B:

+3 trying to involve diag
+3 correct computation of v (or something equiv.)
+4 correct computation of z (or something equiv.)

Misc.

-2 if z returned as a vector
4. Consider the following implementation of the method of bisection:

```matlab
function root = Bisection(fname,a,b,delta)
    % fname is a string that names a continuous function f(x) of a single variable.
    % a and b define an interval [a,b] and f(a)f(b) < 0. delta is a non-negative real.
    % root is the midpoint of an interval [alpha,beta] with the property that
    % f(alpha)f(beta) <= 0 and |beta-alpha| <= delta

    while abs(a-b) > delta
        mid = (a+b)/2;
        if feval(fname,a)*feval(fname,mid)<0
            b = mid;
        else
            a = mid;
        end
    end
    root = (a+b)/2;
```

(a) (7pts) Explain why the loop may never terminate. (b) (7pts) Even if the loop terminates, the value returned in root may not be the midpoint of a bracketing interval with length \(\leq \delta \). Explain. (c) (6 pts) Are there any other flaws in the above implementation? Explain.

(a) If \(a \) and \(b \) are adjacent floating point numbers and \(\delta \) is less than their difference then the loop will never end.
(b) If \(\frac{a+b}{2} \) is the only root in \([a,b] \) and \(f(a) > 0 \), then \(b \) never changes during the iteration and after the first step \([a,b] \) will not be bracketing.
(c) Two \(f \)-evaluations per step. Can live with just one.

Question 4a:
+3 - any mention of floating point spacing
+5 - if say trouble when \(\delta \) < \(\epsilon \)
+7 - if give full argument, including if discussing when \(\delta = 0 \)

Question 4b:
+2 - showing how to correct the flaw but not explaining what the flaw is.
+7 - any mention of trouble when \(f(a)f(b) = 0 \) gets full credit.

Question 4c:
+2 - Mention of inefficiency without discussing the \(f \)evals at all.
+6 - Pretty much all or nothing here. Full credit for anything OTHER than the flaws outlined in (a) or (b). One flaw is the number of \(f \)evals in the for loop.
5. Suppose we are given n data points $(x_1, y_1), \ldots, (x_n, y_n)$ and an additional point (h, k). We want to compute the minimum value of

$$
\phi(r) = \sum_{i=1}^{n} d_i
$$

where d_i is the minimum euclidean distance from (x_i, y_i) to a point on the circle $(x-h)^2 + (y-k)^2 = r^2$.

Assume that we are given column n-vectors x and y that house the data points and scalars h and k.

(a) (10 pts) Write a Matlab script that makes effective use of

$$
z = \text{fmin}('F', L, R, Options, P1, P2, \ldots)
$$

attempts to return a value of z which is a local minimizer of $F(z, P1, P2)$ in the interval $L < z < R$. 'F' is a string containing the name of the objective function to be minimized and $P1, P2, \ldots$ are its parameters.

and assigns to rBest a local minimizer of ϕ. (You may ignore Options in this problem.) Give a justification for the choice of the search interval endpoints L and R used by your script.

(b) (10 pts) Give a complete implementation of the objective function that your script passes to fmin. Vectorize and be efficient in both parts of this problem.

% Objective function
function mu = f(r,rVals)
mu = sum(abs(real(rVals-r)));%

% Script
rVals = sqrt((x-h).^2 + (y-k).^2);
L = min(rVals);
R = max(rVals);
% All the data is in between the circle (x-h)^2 + (y-k)^2 = L^2 and
% the circle (x-h)^2 + (y-k)^2 = R^2.
% The optimum circle must be in between these two circles.
rBest = fmin('f', L, R, 0, rVals)

Part a)
+2 correct usage of fmin
+4 correct L & R values (pretty much anything that correctly bounded rBest was acceptable, although some things, such as a negative value for L lost marks)
+2 justification of the values for L and R.
+2 assigning result of fmin to rBest, as per instructions

- Making many calls to fmin resulted in a one point deduction from the "correct usage" points, even though each call to fmin may have been syntactically correct.

Part b)
+4 correct implementation of the function
+2 no loops
+2 for general efficiency, i.e. no unnecessary work.
+2 for calculating the distances from (h,k) to all the (x_i, y_i) just once, and passing this in as a parameter to the objective function.

- Any objective function that had the same minimizer as $\phi(r)$ was considered correct, even if it didn't compute the same value as $\phi(r)$.
- Some people had objective functions that wouldn't allow them to take
advantage of passing previously calculated results in as parameters. However, this was not sufficient for them to receive those 2 points.