Problem 1
Assume you are sampling values from a some unknown distribution with finite \(\mu \) and \(\sigma \) (say a survey asking students to grade their TA on a 0-100 scale).
After getting the first 10 responses (10 samples) you got a mean of \(\bar{X}_{10} = 61 \).
Give a 95% confidence interval for \(\mu \).
After receiving all 50 responses from the students you got a mean of \(\bar{X}_{50} = 53 \).
Give a 95% confidence interval for \(\mu \).
Why would you use 2 different distributions for the two problems?

Problem 2
You have seen in class the maximum likelihood estimator \(\hat{A} = \max(x_i) \) for the parameter \(A \) of a Uniform distribution on the interval \((0, A)\).
Find a maximum likelihood estimator for the parameters \(A \) and \(B \) of a Uniform distribution on the interval \((A, B)\)?
Find a maximum likelihood estimator for the parameter \(A \) of a Uniform distribution on the interval \((-A, A)\).
Find a maximum likelihood estimator for the parameter \(A \) of a Uniform distribution on the interval \((A, 2A)\).

Problem 3
Estimator \(\hat{\Theta} \) is called an unbiased estimator for \(\Theta \) if \(E(\hat{\Theta}) = \Theta \) (notice that \(\hat{\Theta} \) is indeed a random variable!).
Consider a Uniform distribution on the interval \((0, A)\).
Is the maximum likelihood estimator for \(A \) unbiased?
Is \(\hat{A}_1 = 2\bar{X}_n \) an estimator for \(A \)? Is it a reasonable estimator for \(A \)?
Is the above defined \(\hat{A}_1 \) an unbiased estimator for \(A \)?
Is \(\hat{A}_2 = 2 \) an estimator for \(A \)? Is it a reasonable estimator for \(A \)?
Is the above defined \(\hat{A}_2 \) an unbiased estimator for \(A \)?

Problem 4
Estimator \(\hat{\Theta}_1 \) is considered a tighter estimator for \(\Theta \) than the estimator \(\hat{\Theta}_2 \) if for any value of \(\Theta \) and any sequence of samples \(x_1, x_2, \ldots, x_n \) \(|\hat{\Theta}_1 - \Theta| < |\hat{\Theta}_2 - \Theta| \).
Once again consider a Uniform distribution on the interval \((0, A)\).
Is the maximum likelihood estimator for \(A \) tighter than the above defined \(\hat{A}_1 \)?
Is the maximum likelihood estimator for \(A \) tighter than the above defined \(\hat{A}_2 \)?
Can you find an estimator for \(A \) that is tighter than \(\hat{A}_1 \)?