## CS 316: Virtual Memory

Kavita Bala Fall 2007 Computer Science Cornell University









| Virtual Memory                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Each process has its own view of memory         <ul> <li>Called virtual address space</li> <li>So can conceptually put your code, data in the place you want it</li> </ul> </li> </ul>             |
| <ul> <li>On-the-fly at runtime: need translation from<br/>virtual address space to physical address space<br/>of machine         <ul> <li>Relocate loads and stores to actual memory</li> </ul> </li> </ul> |
| <ul> <li>Interface:         <ul> <li>Programs load/store to virtual addresses</li> <li>Actual memory uses physical addresses</li> </ul> </li> </ul>                                                         |
| Kavita Bala, Computer Science, Cornell University                                                                                                                                                           |



## Virtual Memory Advantages

- Easy relocation: simplifies loading a program for execution by providing for code relocation (i.e., the code can be loaded anywhere in main memory)
- Easy sharing: allows efficient and safe sharing of memory among multiple programs

Kavita Bala, Computer Science, Cornell University























## Translation Lookaside Buffers (TLBs) • Just like any other cache, the TLB can be organized as fully associative, set associative, or direct mapped V Virtual Page # Physical Page # Dirty Ref A=1 A=0 A=1 A=1 A=0 A=0 A=1 TLB access time is typically smaller than cache access time (because TLBs are much smaller than caches) - Typically not more than 64 to 256 entries - CPU pipeline speed: small/fast Kavita Bala, Computer Science, Cornell University

















## Summary

- Caches, TLBs, Virtual Memory all understood by examining how they deal with the four questions
  - 1. Where can block be placed?
  - 2. How is block found?
    - TLB: 4-way set associative or fully associative
  - 3. What block is replaced on miss?
  - 4. How are writes handled?
- Page tables map virtual address to physical address
  - TLBs are important for fast translation

Kavita Bala, Computer Science, Cornell University