
1

CS 316:
Virtual Memory

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements

• HW 2 is due on Friday

• PA 4 is out on Friday

2

Kavita Bala, Computer Science, Cornell University

Processor & Memory

• Currently, the
processor’s address
lines are directly
routed via the system
bus to the memory
banks
– Simple, fast

• What happens when
the program issues a
load or store to an
invalid location?
– e.g. 0x000000000 ?
– uninitialized pointer

Processor

Text

Data

Stack

Heap

Memory

0x1000

0x7fffffff

Kavita Bala, Computer Science, Cornell University

Physical Addressing Problems

• What happens
when another
program is
executed
concurrently on
another processor?
– The addresses will

conflict Processors
Text

Data

Stack

Heap

Memory

0x1000

0x7fffffff

Text

Data

Stack

Heap

3

Kavita Bala, Computer Science, Cornell University

Physical Addressing Problems
• What happens when

another program is
executed concurrently on
another processor?
– The addresses will conflict

• We could try to relocate
the second program to
another location
– Assuming there is one
– Introduces more problems! Processors

Text

Data

Stack

Heap

Memory
0x1000

0x7fffffff

Text
Data

Stack

Heap

0x4000

Kavita Bala, Computer Science, Cornell University

Virtual Memory
• Each process has its own view of memory

– Called virtual address space
– So can conceptually put your code, data in the place

you want it

• On-the-fly at runtime: need translation from
virtual address space to physical address space
of machine
– Relocate loads and stores to actual memory

• Interface:
– Programs load/store to virtual addresses
– Actual memory uses physical addresses

4

Kavita Bala, Computer Science, Cornell University

Address Space

• Memory Management Unit (MMU)
– Combination of hardware and software

Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages
• Easy relocation: simplifies loading a

program for execution by providing for
code relocation (i.e., the code can be
loaded anywhere in main memory)

• Easy sharing: allows efficient and safe
sharing of memory among multiple
programs

5

Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages

• Larger than physical memory: use main
memory as a “cache” for secondary
memory
– Provides ability to run programs larger than

the size of physical memory
– Again, the Principle of Locality

The 80/20 rule
A program is likely to access a relatively small
portion of its address space during any period of
time

Kavita Bala, Computer Science, Cornell University

Virtual Memory Advantages
• Can relocate program while running
• Virtualization

– In CPU: if process is not doing anything,
switch

– In memory: when not using it, somebody else
can use it

6

Kavita Bala, Computer Science, Cornell University

How to make it work?
• Challenge: Virtual Memory can be slow!
• At run-time: virtual address must be translated to a

physical address
• MMU (combination of hardware and software)

Kavita Bala, Computer Science, Cornell University

Address Translation
• How to translate addresses?

– Per word? Per block?
• Costs dictate granularity of translation

– Cost to disk is very large
– Block size has to be large too

• A program’s address space is divided into pages
(all one fixed size)
– Typical: 4KB to 16KB
– Example: virtual address space: 2^32 = 4GB, physical

address space: 1 GB, page size: 4KB

7

Kavita Bala, Computer Science, Cornell University

Paging

• Divide memory into small pages
• Each process has separate mapping of

virtual to physical pages

• OS gets control on certain operations
– Read-only pages trap to OS on write
– Invalid pages trap to OS on read/write

Kavita Bala, Computer Science, Cornell University

Two Programs Sharing Physical Memory

Program 1
virtual address space

main memory

• The starting location of each page (either in
main memory or in secondary memory) is
contained in the program’s page table

Program 2
virtual address space

swap
space

8

Kavita Bala, Computer Science, Cornell University

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

• So each memory request first requires an
address translation from the virtual space
to the physical space

Kavita Bala, Computer Science, Cornell University

Page Table for Translation

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table
(in main memory)

Offset

Physical page #

Offset

swap
space

9

Kavita Bala, Computer Science, Cornell University

Virtual Addressing with a Cache
• Thus it takes an extra memory access to

translate a VA to a PA

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

• This makes memory (cache) accesses
very expensive (if every access was really
two accesses)

Kavita Bala, Computer Science, Cornell University

Translation Lookaside Buffer (TLB)

• Hardware: TLB
• A small cache of recently used address

mappings
– TLB hit: avoid a page table lookup

10

Kavita Bala, Computer Science, Cornell University

Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag
Physical page

base addrV

TLB

Page Table
(in physical memory)

Kavita Bala, Computer Science, Cornell University

Translation Lookaside Buffers (TLBs)

• Just like any other cache, the TLB can be
organized as fully associative, set
associative, or direct mapped

V Virtual Page # Physical Page # Dirty Ref

• TLB access time is typically smaller than
cache access time (because TLBs are
much smaller than caches)
– Typically not more than 64 to 256 entries
– CPU pipeline speed: small/fast

11

Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

• A TLB miss:
– If page in main memory, TLB miss can be

handled (in hardware or software)
Load from the page table into the TLB
Takes 10’s of cycles

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Kavita Bala, Computer Science, Cornell University

A TLB in the Memory Hierarchy

• A TLB miss:
– If the page is not in main memory, then it’s a

true page fault
Takes 1,000,000’s of cycles to service a page fault

• TLB misses are much more frequent than
true page faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

12

Kavita Bala, Computer Science, Cornell University

TLB Validity

• Keep TLB valid on context switch
– Flush TLB on context switch (x86)
– Store process id (MIPs)

• OS has to keep TLB valid

Kavita Bala, Computer Science, Cornell University

Remove TLB from critical path?

• A virtually addressed cache would only
require address translation on cache
misses

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

13

Kavita Bala, Computer Science, Cornell University

Virtual vs. Physical Caches

• L1 (on-chip) caches are typically virtual
• L2 (off-chip) caches are typically physical

CPU
Cache
SRAM

Memory
DRAM

addr

data
MMU

Cache
SRAM

MMUCPU Memory
DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

Kavita Bala, Computer Science, Cornell University

Address Translation
• Translation is done through the page table

– A virtual memory miss (i.e., when the page is
not in physical memory) is called a page fault

14

Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary
• Virtual to physical address translation is

assisted by hardware?
– Translation Lookaside Buffer (TLB) that

caches the recent translations
TLB access time is part of the cache hit time
May allot an extra stage in the pipeline for TLB
access

– TLB miss
Can be in software (kernel handler) or hardware

Kavita Bala, Computer Science, Cornell University

Hardware/Software Boundary
• Virtual to physical address translation is

assisted by hardware?
– Page table storage, fault detection and

updating
Page faults result in interrupts (precise) that are
then handled by the OS
Hardware must support (i.e., update
appropriately) Dirty and Reference bits (e.g.,
~LRU) in the Page Tables

15

Kavita Bala, Computer Science, Cornell University

Summary
• Caches, TLBs, Virtual Memory all

understood by examining how they deal
with the four questions
1. Where can block be placed?
2. How is block found?

TLB: 4-way set associative or fully associative
3. What block is replaced on miss?
4. How are writes handled?

• Page tables map virtual address to
physical address
– TLBs are important for fast translation

