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CS 316: 
Caches-III

Kavita Bala
Fall 2007

Computer Science
Cornell University
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Announcements

• HW 1 grades are out

• HW 2 is due on Friday

• PA 4 is out on Friday 
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Cache Organization
• Three common designs

– Fully associative: Block can be anywhere in 
the cache

– Direct mapped: Block can only be in one line 
in the cache

– Set-associative: Block can be in a few (2 to 8) 
places in the cache
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Misses
• Three types of misses

– Cold
The line is being referenced for the first time

– Capacity
The line was evicted because the cache was not 
large enough

– Conflict
The line was evicted because of another access 
whose index conflicted
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Comparison: Direct Mapped Cache
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Cache Writes

• No-Write
– writes invalidate the cache and go to memory

• Write-Through
– writes go to cache and to main memory

• Write-Back
– write cache, write main memory only when block is evicted 

CPU
Cache
SRAM

Memory
DRAM

addr

data
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What about Stores?
• Where should you write the result of a store?

– If that memory location is in the cache?
Send it to the cache
Should we also send it to memory right away?
(write-through policy)
Wait until we kick the block out (write-back policy)

– If it is not in the cache?
Allocate the line (put it in the cache)?
(write allocate policy)
Write it directly to memory without allocation?
(no write allocate policy)
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Handling Stores (Write-Through)
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Write-Through (REF 1)
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Write-Through (REF 1)
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Write-Through (REF 2)
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Write-Through (REF 2)
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Write-Through (REF 3)
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Write-Through (REF 3)
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Write-Through (REF 4)
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Write-Through (REF 4)
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Write-Through (REF 5)
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Write-Through (REF 5)
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Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[   0   ]
St   R1 → M[   5   ]
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Write-Through (REF 6,7,8)
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How Many Memory References?
• Each miss reads a block (only two words in this 

cache)
• Each store writes a word (or a block, depends)
• Total reads: eight words
• Total writes: 

– Before last 3 stores: two words
– After last 3 stores: five 
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Write-Through vs. Write-Back
Can we also design the cache NOT to write 

all stores immediately to memory?
– Keep the most current copy in cache, and 

update memory when that data is evicted 
(write-back policy)

– Do we need to write-back all evicted lines?
– No, only blocks that have been stored into 

(written)
– Keep a “dirty bit”, reset when the line is 

allocated, set when the block is written 
– If a block is “dirty” when evicted, write its data 

back into memory
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Dirty Bits and Write-Back Buffers

• Dirty bits indicate which lines have been written
• Dirty bits enable the cache to handle multiple writes to 

the same cache line without having to go to memory
• Write-back buffer

– A queue where dirty lines are placed

Tag Data Byte 0, Byte 1  … Byte N

Line

V D
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0
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1
1
1
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Handling Stores (Write-Back)
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Write-Back (REF 1)
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Write-Back (REF 1)
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Write-Back (REF 2)
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Write-Back (REF 2)
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Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[ 0 ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10  ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 0

0

0

1

1

lr
u

29
78

29

162
173

173

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 3)

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Ld  R1 ← M[   1   ]
Ld  R2 ← M[   7   ]
St   R2 → M[ 0 ]
St   R1 → M[   5   ]
Ld  R2 ← M[  10 ]

CacheProcessor

0
V d  tag   data

R0
R1
R2
R3

Memory

3

78

120

71

173

21

28

200

225

Misses:   2
Hits: 1

1

0

1

1lr
u 29

173

29

162
173

173



16

Kavita Bala, Computer Science, Cornell University

Write-Back (REF 4)
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Write-Back (REF 4)
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Write-Back (REF 5)
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Write-Back (REF 5)
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Write-Back (REF 5)
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Write-Back (REF 6, 7, 8)
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How many memory references?
• Each miss reads a block 

Two words in this cache
• Each evicted dirty cache line writes a block
• Total reads: eight words
• Total writes: four after final eviction

Choose write-back or write-through?
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Cache Design
• Need to determine parameters

– Block size
– Number of ways
– Eviction policy
– Write policy
– Separate I-cache from D-cache
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Basic Cache Organization

Decide on the block size
– How?  Simulate lots of different block sizes 

and see which one gives the best 
performance

– Most systems use a block size between 32 
bytes and 128 bytes

Tag Block
OffsetIndex
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Tradeoff

• Larger sizes reduce the overhead by
Reducing the number of tags
Reducing the size of each tag 

• But
– Have fewer blocks available
– And the time to fetch the block on a miss is 

longer
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Short Performance Discussion

• Complicated
– Time from start-to-end (wall-clock time)
– System time, user time
– CPI (Cycles per instruction)

• Ideal CPI?
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Cache Performance
• Consider hit (H) and miss ratio (M)
• H x ATcache + M x ATmemory
• Hit rate = 1 – Miss rate
• Access Time is given in cycles
• Ratio of Access times, 1:50

• 90%   : .90   + .1 x 50     = 5.9
• 95%   : .95   + .05 x 50   = .95+2.5=3.45
• 99%   : .99   + .01 x 50   = 1.49
• 99.9%: .999 + .001 x 50 = 0.999 + 0.05 = 1.049
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Cache Hit/Miss Rate
• Consider processor that is 2x times faster

– But memory is same speed

• Since AT is access time in terms of cycle 
time: it doubles 2x

• H x ATcache + M x ATmemory

• Ratio of Access times, 1:100
• 99%   : .99   + .01 x 100   = 1.99
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Cache Hit/Miss Rate
• Original is 1GHz, 1ns is cycle time
• CPI (cycles per instruction): 1.49
• Therefore, 1.49 ns for each instruction

• New is 2GHz, 0.5 ns is cycle time.
• CPI: 1.99, 0.5ns.  0.995 ns for each instruction.

• So it doesn’t go to 0.745 ns for each instruction. 
• Speedup is 1.5x (not 2x)
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Misses
• Three types of misses

– Cold
The line is being referenced for the first time

– Capacity
The line was evicted because the cache was not 
large enough

– Conflict
The line was evicted because of another access 
whose index conflicted
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Cache Conscious Programming

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j) 
for(i = 0; i < NROW; ++i)

sum += a[j][i];

• Speed up this program!
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Cache Conscious Programming

• Every access is a cache miss!

int a[NCOL][NROW];
int sum = 0;

for(j = 0; j < NCOL; ++j) 
for(i = 0; i < NROW; ++i)

sum += a[j][i];
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Cache Conscious Programming

• Same program, trivial transformation, 3 out 
of four accesses hit in the cache

int a[NCOL][NROW];
int sum = 0;

for(i = 0; i < NROW; ++i) 
for(j = 0; j < NCOL; ++j)

sum += a[j][i];
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