CS 316:
Memory and Caches

Kavita Bala
Fall 2007
Computer Science
Cornell University

Announcements

* Prelim graded
— Average: 69.8
— Standard Deviation: 16
— Handed out after class
— Discussed in recitation

e HW 2 is out

» Caches and Memory: Chapter 7 (H & P)

Kavita Bala, Computer Science, Cornell University



Memory So Far

Big array of storage with more complex
indexing than registers

— Addressing modes help us access memory
— AJi]; use base (i) + displacement (A)

— Use less space in instruction than 32-bit
immediate field

Kavita Bala, Computer Science, Cornell University

SRAM vs. DRAM

 SRAM (static random access memory)
— Faster than DRAM
— Each storage cell is larger (4-6 transistors)
— So smaller capacity for same area
— 2-10ns access time
« DRAM (dynamic random access memory)
— Each storage cell tiny (capacitance on wire)
— Can get 1-2GB chips
— 50-150ns access time
— Leaky—needs to refresh data periodically

Kavita Bala, Computer Science, Cornell University




Dynamic RAM: DRAM

e Dynamic-RAM
— Data values require constant refresh
— Internal circuitry keeps capacitor charges

Word line

Pass transistor

Capacitor _‘?

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell
ts and a t istor used to the cell.

Bit line

Kavita Bala, Computer Science, Cornell University

Performance

» CPU clock rates ~0.2ns-2ns (5GHz-500MHz)

Technology Capacity Cost/GB Latency

Tape 1TB $.17 100s

Disk 300 GB $.34 Millions cycles (ms)
DRAM 4GB $100s 50-300 cycles (10s of ns)
SRAM off 512KB $4-10'sk 5-15 cycles (few ns)
SRAMon 16 KB ??? 1-3 cycles (ns)

e Capacity and latency are closely coupled
» Cost is inversely proportional

» How do we create the illusion of large and fast memory?

Kavita Bala, Computer Science, Cornell University



Memory Hierarchy

 Idea: Hide latency using small, fast memories
called caches

Increasing distance
from the CPU in

access time
Levels in the

memory hierarchy

/

Size of the memory at each level

Cache Design 101

1 cycle access (early in pipeline)

1-3 cycle access

L3 becoming more

common L2 Cache (%-32MB) 5-15 cycle access
(sometimes VER \

LARGE)

Memory (128MB — few GB) 50-300 cycle access

Disk (Many GB) Millions cycle access!

These are rough numbers: mileage may vary for latest/greatest
Caches USUALLY made of SRAM

Kavita Bala, Computer Science, Cornell University




Memory Hierarchy

« Closer to processor

— Subset of memory farther from processor

— Faster and smaller

Processor

— Transfer an entire block

'

L

A

r

Data are transferred

Kavita Bala, Computer Science, Cornell University

Insight of Caches

Exploit locality
Two types: temporal and spatial

Temporal locality

If memory location X is accessed, then it is more likely to be
accessed again in the near future than some random location Y

Caches exploit temporal locality by placing a memory element

that has been referenced into the cache

Spatial locality

If memory location X is accessed, then locations near X are more
likely to be accessed in the near future than some random

location Y

Caches exploit spatial locality by allocating a cache line of data

(including data near the referenced location)

Kavita Bala, Computer Science, Cornell University




Cache Lookups (Read)

» Look at address issued by processor

» Search cache to see if that block is in the
cache
— Hit: Block is in the cache
» return requested data
— Miss: Block is not in the cache
» read line from memory
= evict an existing line from the cache
= place new line in cache
= return requested data

Kavita Bala, Computer Science, Cornell University

a. Before the reference to X,,  b. After the reference to X,

Kavita Bala, Computer Science, Cornell University




Cache Organization

e Cache has to be fast and small

— Gain speed by performing lookups in parallel,
requires die real estate

— Reduce hardware required by limiting where in
the cache a block might be placed

Kavita Bala, Computer Science, Cornell University

Cache Organization

* Three common designs

— Fully associative: Block can be anywhere in
the cache

— Direct mapped: Block can only be in one line
in the cache

— Set-associative: Block can be in a few (2 to 8)
places in the cache

Kavita Bala, Computer Science, Cornell University




Direct Mapped Cache

« Simplest
 Block can only be in one line in the
cache

 How to determine this location?
—Use modulo arithmetic
—(Block address) modulo (# cache blocks)

—For power of 2, use log (cache size in
blocks)

Kavita Bala, Computer Science, Cornell University

00001 00101 01001 01101 10001 10101 11001
Memory

Kavita Bala, Computer Science, Cornell University




Tags and Offsets

* Tag: matching
o Offset: within block
e Valid bit: is the data valid?

Kavita Bala, Computer Science, Cornell University

Valid Bits

» Valid bits indicate whether cache line
contains an up-to-date copy of the values
In memory
— Must be 1 for a hit
— Reset to 0 on power up

» An item can be removed from the cache by
setting its valid bit to O

Kavita Bala, Computer Science, Cornell University



Hit

Address (showing bit positions)

3130 ---

131211---2 10

Byte
offset]

10

Index
0
1
2

Valid Tag

Kavita Bala, Computer Science, Cornell University

Intrinsity FastMath

Address (showing bit positions)

31 1413---65--210
18 48 44  Byte Dat.
Tag offset
Index Block offset
18 bits 512 bits
V  Tag Data
256
entries
ART: Jae J32 32
- ] ] L
Mux

32




Cache Size

Cache of size 2" blocks (index: n bits)
Block size of 2™ word (block index: m+2
bits)

Tag field: 32 — (n + m + 2)

Valid bit: 1

Bits in cache: 2" x (block size + tag size +
valid bit size)

— =20 (2M x 32 + (32-n-m-2) + 1)

Kavita Bala, Computer Science, Cornell University

A Simple Direct Mapped Cache

Processor Cache

4 cache lines
1 bit tag field
2 word block
Ld R1« M[ -
Ld R2 « M[ V tag data

Ld R3.« M[ o |

Ld R3« M[

= el m-=
I

o | |

]

12
13
14

15

11



1st Access

Processor

m Ld R1< M]
Ld R2 « M[ tag data

1]
5]
FEPRVEREEN | 2 |
Ld R3«<M[ 4 ]
RSBl O m-=
I
o | |
I

Kavita Bala, Computer Science, Cornell University

1st Access

Processor Cache

Addr: 0001
== Ld R1< M[

1] /d
Ld R2M[ 5 ] tag data
Lg R3<—M% 1 } 1] | 100
Ld R3« M[ 4
HaReeMo m-
[ ]

Misses: 13
Hits: 14

¥ 220 |

15




2nd Access

Processor

Ld R1<« M[
m Ld R2« M[ tag data

Lg Rg%ME 1] 0 [ 100 |
Ld R3«< M
= Rl m-
[ ]
o [
I
o [
I
Misses: 1
Hits: 0

Kavita Bala, Computer Science, Cornell University

Processor

Ld RL«M[ 1 ]
== Ld R2<M[ 5 ]
Ld R3«M[ 1 ]
Ld R3« M[ 4 ]
Ld R2«M[ 0 ]

Ro I
10 BN B 050
- 230 |

R2
r3 I Hits: 14
15




3d Access

Processor

Ld RL«M[ 1 ]
Ld R2«M[ 5 ]
== | d R3«M[ 1 ]
Ld R3«M[ 4 ]
Ld R2« M[ 0 ]

ro NG
R1
R2
R3

Cache

Addr: 0001

tag data

11 0] 100 |
of |

I
1] 0 ]

Misses: 2
Hits: 0

Kavita Bala, Computer Science, Cornell University

3d Access

Processor

Ld RL«M[ 1 ]
Ld R2«M[ 5 ]
== | d R3<M[ 1 ]
Ld R3« M[ 4 ]
Ld R2«M[ 0 ]

ro HEGEGE
=¥ 110 |

R2
R3

tag data
11 0] 100 |

of |
[
1] 0 |
o [
I
Misses: 2
Hits:

12
13
14

15

14



4t Access

Processor Cache Memory

g

;{\%
Q
Addr: 01007
Ld R1+ M
Ld RZ:M% tag data

Ld R3 M 11 0 | 100 |
== Ld R3« M[
el Al ol [
I

1] 0 ]

~No o1k wWwN R O

ro INEGEGEGE
=¥ 110 | Misses:

R2
R3 Hits:

Kavita Bala, Computer Science, Cornell University

4t Access

Processor

Ld R1 e M[
Ld R2 « M[ tag data

Ld R3<—M% 11 0 [ 100 |
m | d R3« M
I

1] 0 |

ro N
5110 | ¥ 220 |

Misses: 13
14

15

15



5th Access

Processor Cache

Addr: 0000

Ld R1 ¢ M[
Ld R2 « M[ tag data

1]

5]
EERUERENN: 0| 100

Ld R3«MJ[ 4
S % Hj—
—

1] 0 ]

ro INEGEGEGE
R1
R2

R3 Hits:

Misses:

Kavita Bala, Computer Science, Cornell University

5th Access

Processor Cache Memory

Addr: 0000

Ld R1« M[
Ld R2 « M[

1]
5]
Ld R3<—M[1} 1/ 0| 100 |
4
0]

Ld R3« M[

= Ld Rz Ml o |
[ 180 |

Lo 100
10
ro I 11
S 10 N 00
100 - 230
14

15

0
1
2
3
tag data 4
5
6
7




5th Access

Processor Cache

Addr: 1010

tag data

1] 0] 100 |
oo ) NS

R2« M[15 ]
1] 0 |

T

R1 . =
100 EERAEE
R3 Hits:

Kavita Bala, Computer Science, Cornell University

5th Access

Processor Cache

Addr: 1010

tag data
11 0] 100 |
110 |

R2« M[10 ]
R2« M[15 ]
1] 0

=o I
170 I W 220

Misses: 13
14
15




6th Access

Processor Cache

Addr: 1111

tag data
11 0| 100 |
110 |

R2 <« M[10 ]
R2« M[15 ]
1] 0 |

ro INEGEGEGE

5; Misses:

R3 Hits:

Kavita Bala, Computer Science, Cornell University

6th Access

Processor Cache

Addr: 1111

tag data
11 0] 100 |
110 |

R2« M[10 ]
R2« M[15 ]
1] 0

ro I
N 10 R B 550 |
: 13
14
15




Cache

» Exploiting Spatial and Temporal Locality

Kavita Bala, Computer Science, Cornell University

7th Access

Processor Cache

Addr: 1000

Rl«M[ 1
R2« M[ 5
R3« M[ 1

]
] tag data
]
R3« M[ 4 ]
]
]
]
]

11 0] 100 |
110 |
1] 0 |

R2« M[ 0
R2 « M[ 10
R2 « M[15
R2«< M[ 8

ro I

S5 110 | 4 ¥ 220 |

13
14

15

Misses:




7th Access

Processor Cache

Addr: 1000

R1 <« M[
R2 < M[ tag data

1
1
R3<M[ 1 ]
R3 M 4 ]
R2 « M[ 1

]

]

1

R2 « M[ 10
R2 « M[ 15
R2:M[ 8 1] 0 |

=o I

=30 110 | : .
RZ Misses: 5
R3 Hits: 3

Kavita Bala, Computer Science, Cornell University

Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted

Kavita Bala, Computer Science, Cornell University



6th Access

Processor

RI<M[ 1
R2« M[ 5
R3« M[ 1
R3I«<M[ 4
R2«< M[ 0
R2 « M[ 12
R2« M[ 8

ro INEGEGEGE
R1
R2
R3

Cache

Addr: 1100

tag data

11 0] 100 |
o |

I
1] 0 ]

Misses:
Hits:

Kavita Bala, Computer Science, Cornell University

6th Access

Processor

RleM[ 1
R2« M[ 5
R3« M[ 1
R3« M[ 4
R2« M[ 0
R2 « M[12
R2« M[ 8

ro HEGEGE
=¥ 110 |
] 220 |

Cache Memory

Addr: 1100

11 0] 100 |
o |
i 180 |

T

9
100
ol | [

Misses: 3 ié
14

15

0
1
2
3
tag data 4
5
6
7

21



7th Access

Processor Cache

Addr: 1000

RLeM[ 1
R« M[ 5 tag data

SDRVESINN 0 | 100 |
R3 - M[ ¢
R2« M[ 0

Ree MO o —
e —

m-
RO _ _

R1 =
R> Misses: 3
R3 Hits: 3

Kavita Bala, Computer Science, Cornell University

7th Access

Processor Cache Memory

Addr: 1000

0
1
2
Rl«M[ 1 3
R2M[ 5 tag data 4
5
6
7

<
e ¢ ] 180 |
<«
el 100 |
10
N )

S 50 R T 050 |
220 - 530 |
14

15




8th and 9th Access

Processor

tag data

-
110
_

I
Misses: 4+2
Hits: 3

Kavita Bala, Computer Science, Cornell University

Processor

513 } tag data

1]

. } m-
R2 ¢« M[12 ] 1
R M[ 8 ] I
R2eM[ 4]

R2«M[ 0]
oML ] —

I
Misses: 4+2+2 220

13
14

15




Misses

* Three types of misses
— Cold
= The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted

Kavita Bala, Computer Science, Cornell University

24



