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Announcements

* Prelim graded
— Average: 69.8
— Standard Deviation: 16
— Handed out after class
— Discussed in recitation

e HW 2 is out

» Caches and Memory: Chapter 7 (H & P)
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Memory So Far

Big array of storage with more complex
indexing than registers

— Addressing modes help us access memory
— AJi]; use base (i) + displacement (A)

— Use less space in instruction than 32-bit
immediate field
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SRAM vs. DRAM

 SRAM (static random access memory)
— Faster than DRAM
— Each storage cell is larger (4-6 transistors)
— So smaller capacity for same area
— 2-10ns access time
« DRAM (dynamic random access memory)
— Each storage cell tiny (capacitance on wire)
— Can get 1-2GB chips
— 50-150ns access time
— Leaky—needs to refresh data periodically
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Dynamic RAM: DRAM

e Dynamic-RAM
— Data values require constant refresh
— Internal circuitry keeps capacitor charges

Word line

Pass transistor

Capacitor _‘?

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell
ts and a t istor used to the cell.

Bit line
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Performance

» CPU clock rates ~0.2ns-2ns (5GHz-500MHz)

Technology Capacity Cost/GB Latency

Tape 1TB $.17 100s

Disk 300 GB $.34 Millions cycles (ms)
DRAM 4GB $100s 50-300 cycles (10s of ns)
SRAM off 512KB $4-10'sk 5-15 cycles (few ns)
SRAMon 16 KB ??? 1-3 cycles (ns)

e Capacity and latency are closely coupled
» Cost is inversely proportional

» How do we create the illusion of large and fast memory?
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Memory Hierarchy

 Idea: Hide latency using small, fast memories
called caches

Increasing distance
from the CPU in

access time
Levels in the

memory hierarchy

/

Size of the memory at each level

Cache Design 101

1 cycle access (early in pipeline)

1-3 cycle access

L3 becoming more

common L2 Cache (%-32MB) 5-15 cycle access
(sometimes VER \

LARGE)

Memory (128MB — few GB) 50-300 cycle access

Disk (Many GB) Millions cycle access!

These are rough numbers: mileage may vary for latest/greatest
Caches USUALLY made of SRAM
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Memory Hierarchy

« Closer to processor

— Subset of memory farther from processor

— Faster and smaller

Processor

— Transfer an entire block

'

L

A

r

Data are transferred
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Insight of Caches

Exploit locality
Two types: temporal and spatial

Temporal locality

If memory location X is accessed, then it is more likely to be
accessed again in the near future than some random location Y

Caches exploit temporal locality by placing a memory element

that has been referenced into the cache

Spatial locality

If memory location X is accessed, then locations near X are more
likely to be accessed in the near future than some random

location Y

Caches exploit spatial locality by allocating a cache line of data

(including data near the referenced location)
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Cache Lookups (Read)

» Look at address issued by processor

» Search cache to see if that block is in the
cache
— Hit: Block is in the cache
» return requested data
— Miss: Block is not in the cache
» read line from memory
= evict an existing line from the cache
= place new line in cache
= return requested data
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a. Before the reference to X,,  b. After the reference to X,
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Cache Organization

e Cache has to be fast and small

— Gain speed by performing lookups in parallel,
requires die real estate

— Reduce hardware required by limiting where in
the cache a block might be placed
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Cache Organization

* Three common designs

— Fully associative: Block can be anywhere in
the cache

— Direct mapped: Block can only be in one line
in the cache

— Set-associative: Block can be in a few (2 to 8)
places in the cache
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Direct Mapped Cache

« Simplest
 Block can only be in one line in the
cache

 How to determine this location?
—Use modulo arithmetic
—(Block address) modulo (# cache blocks)

—For power of 2, use log (cache size in
blocks)
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00001 00101 01001 01101 10001 10101 11001
Memory
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Tags and Offsets

* Tag: matching
o Offset: within block
e Valid bit: is the data valid?
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Valid Bits

» Valid bits indicate whether cache line
contains an up-to-date copy of the values
In memory
— Must be 1 for a hit
— Reset to 0 on power up

» An item can be removed from the cache by
setting its valid bit to O
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Hit

Address (showing bit positions)

3130 ---

131211---2 10

Byte
offset]

10

Index
0
1
2

Valid Tag
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Intrinsity FastMath

Address (showing bit positions)

31 1413---65--210
18 48 44  Byte Dat.
Tag offset
Index Block offset
18 bits 512 bits
V  Tag Data
256
entries
ART: Jae J32 32
- ] ] L
Mux

32




Cache Size

Cache of size 2" blocks (index: n bits)
Block size of 2™ word (block index: m+2
bits)

Tag field: 32 — (n + m + 2)

Valid bit: 1

Bits in cache: 2" x (block size + tag size +
valid bit size)

— =20 (2M x 32 + (32-n-m-2) + 1)
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A Simple Direct Mapped Cache

Processor Cache

4 cache lines
1 bit tag field
2 word block
Ld R1« M[ -
Ld R2 « M[ V tag data

Ld R3.« M[ o |

Ld R3« M[

= el m-=
I

o | |

]

12
13
14

15

11



1st Access

Processor

m Ld R1< M]
Ld R2 « M[ tag data

1]
5]
FEPRVEREEN | 2 |
Ld R3«<M[ 4 ]
RSBl O m-=
I
o | |
I
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1st Access

Processor Cache

Addr: 0001
== Ld R1< M[

1] /d
Ld R2M[ 5 ] tag data
Lg R3<—M% 1 } 1] | 100
Ld R3« M[ 4
HaReeMo m-
[ ]

Misses: 13
Hits: 14

¥ 220 |

15




2nd Access

Processor

Ld R1<« M[
m Ld R2« M[ tag data

Lg Rg%ME 1] 0 [ 100 |
Ld R3«< M
= Rl m-
[ ]
o [
I
o [
I
Misses: 1
Hits: 0
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Processor

Ld RL«M[ 1 ]
== Ld R2<M[ 5 ]
Ld R3«M[ 1 ]
Ld R3« M[ 4 ]
Ld R2«M[ 0 ]

Ro I
10 BN B 050
- 230 |

R2
r3 I Hits: 14
15




3d Access

Processor

Ld RL«M[ 1 ]
Ld R2«M[ 5 ]
== | d R3«M[ 1 ]
Ld R3«M[ 4 ]
Ld R2« M[ 0 ]

ro NG
R1
R2
R3

Cache

Addr: 0001

tag data

11 0] 100 |
of |

I
1] 0 ]

Misses: 2
Hits: 0
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3d Access

Processor

Ld RL«M[ 1 ]
Ld R2«M[ 5 ]
== | d R3<M[ 1 ]
Ld R3« M[ 4 ]
Ld R2«M[ 0 ]

ro HEGEGE
=¥ 110 |

R2
R3

tag data
11 0] 100 |

of |
[
1] 0 |
o [
I
Misses: 2
Hits:

12
13
14

15

14



4t Access

Processor Cache Memory

g

;{\%
Q
Addr: 01007
Ld R1+ M
Ld RZ:M% tag data

Ld R3 M 11 0 | 100 |
== Ld R3« M[
el Al ol [
I

1] 0 ]

~No o1k wWwN R O

ro INEGEGEGE
=¥ 110 | Misses:

R2
R3 Hits:
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4t Access

Processor

Ld R1 e M[
Ld R2 « M[ tag data

Ld R3<—M% 11 0 [ 100 |
m | d R3« M
I

1] 0 |

ro N
5110 | ¥ 220 |

Misses: 13
14

15

15



5th Access

Processor Cache

Addr: 0000

Ld R1 ¢ M[
Ld R2 « M[ tag data

1]

5]
EERUERENN: 0| 100

Ld R3«MJ[ 4
S % Hj—
—

1] 0 ]

ro INEGEGEGE
R1
R2

R3 Hits:

Misses:
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5th Access

Processor Cache Memory

Addr: 0000

Ld R1« M[
Ld R2 « M[

1]
5]
Ld R3<—M[1} 1/ 0| 100 |
4
0]

Ld R3« M[

= Ld Rz Ml o |
[ 180 |

Lo 100
10
ro I 11
S 10 N 00
100 - 230
14

15

0
1
2
3
tag data 4
5
6
7




5th Access

Processor Cache

Addr: 1010

tag data

1] 0] 100 |
oo ) NS

R2« M[15 ]
1] 0 |

T

R1 . =
100 EERAEE
R3 Hits:
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5th Access

Processor Cache

Addr: 1010

tag data
11 0] 100 |
110 |

R2« M[10 ]
R2« M[15 ]
1] 0

=o I
170 I W 220

Misses: 13
14
15




6th Access

Processor Cache

Addr: 1111

tag data
11 0| 100 |
110 |

R2 <« M[10 ]
R2« M[15 ]
1] 0 |

ro INEGEGEGE

5; Misses:

R3 Hits:
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6th Access

Processor Cache

Addr: 1111

tag data
11 0] 100 |
110 |

R2« M[10 ]
R2« M[15 ]
1] 0

ro I
N 10 R B 550 |
: 13
14
15




Cache

» Exploiting Spatial and Temporal Locality
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7th Access

Processor Cache

Addr: 1000

Rl«M[ 1
R2« M[ 5
R3« M[ 1

]
] tag data
]
R3« M[ 4 ]
]
]
]
]

11 0] 100 |
110 |
1] 0 |

R2« M[ 0
R2 « M[ 10
R2 « M[15
R2«< M[ 8

ro I

S5 110 | 4 ¥ 220 |

13
14

15

Misses:




7th Access

Processor Cache

Addr: 1000

R1 <« M[
R2 < M[ tag data

1
1
R3<M[ 1 ]
R3 M 4 ]
R2 « M[ 1

]

]

1

R2 « M[ 10
R2 « M[ 15
R2:M[ 8 1] 0 |

=o I

=30 110 | : .
RZ Misses: 5
R3 Hits: 3
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Misses

* Three types of misses
— Cold
» The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted
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6th Access

Processor

RI<M[ 1
R2« M[ 5
R3« M[ 1
R3I«<M[ 4
R2«< M[ 0
R2 « M[ 12
R2« M[ 8

ro INEGEGEGE
R1
R2
R3

Cache

Addr: 1100

tag data

11 0] 100 |
o |

I
1] 0 ]

Misses:
Hits:
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6th Access

Processor

RleM[ 1
R2« M[ 5
R3« M[ 1
R3« M[ 4
R2« M[ 0
R2 « M[12
R2« M[ 8

ro HEGEGE
=¥ 110 |
] 220 |

Cache Memory

Addr: 1100

11 0] 100 |
o |
i 180 |

T

9
100
ol | [

Misses: 3 ié
14

15

0
1
2
3
tag data 4
5
6
7

21



7th Access

Processor Cache

Addr: 1000

RLeM[ 1
R« M[ 5 tag data

SDRVESINN 0 | 100 |
R3 - M[ ¢
R2« M[ 0

Ree MO o —
e —

m-
RO _ _

R1 =
R> Misses: 3
R3 Hits: 3
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7th Access

Processor Cache Memory

Addr: 1000

0
1
2
Rl«M[ 1 3
R2M[ 5 tag data 4
5
6
7

<
e ¢ ] 180 |
<«
el 100 |
10
N )

S 50 R T 050 |
220 - 530 |
14

15




8th and 9th Access

Processor

tag data

-
110
_

I
Misses: 4+2
Hits: 3
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Processor

513 } tag data

1]

. } m-
R2 ¢« M[12 ] 1
R M[ 8 ] I
R2eM[ 4]

R2«M[ 0]
oML ] —

I
Misses: 4+2+2 220

13
14

15




Misses

* Three types of misses
— Cold
= The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted
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