CS 316:
Pipelining Hazards

Kavita Bala
Fall 2007
Computer Science
Cornell University

Basic Pipelining

Five stage “RISC” load-store architecture
1. Instruction fetch (IF)
e getinstruction from memory

2. Instruction Decode (ID)
» translate opcode into control signals and read regs

3. Execute (EX)
o perform ALU operation

4. Memory (MEM)
» Access memory if load/store

5. Writeback (WB)
* update register file

Following slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University

Pipelining Recap

* Powerful technique for masking latencies
— Logically, instructions execute one at a time

— Physically, instructions execute in parallel
= Instruction level parallelism

* Decouples the processor model from the
Implementation
— Interface vs. implementation

* BUT dependencies between instructions
complicate the implementation

Kavita Bala, Computer Science, Cornell University

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Time Graphs

Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

What can go wrong?

® Structural hazards

— Two instructions in the pipeline try to simultaneously
access the same resource

» Data hazards
— A required operand is not ready
— Usually because a previous instruction in the pipeline
has not committed it to the register file yet
* Control hazards
— The next instruction to fetch cannot be determined

— Usually because a jump or branch instruction has not
determined the next PC yet

Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

What Can Go Wrong?

» Data hazards
— register reads occur in stage 2
— register writes occur in stage 5

— could read the wrong value if is about to be
written

e Control hazards

— branch instruction may change the PC in
stage 4

— what do we fetch before that?

Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

Different type of Hazards

» Use register value in subsequent
instruction

add

nand 5

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee

Data Hazards: AL ops

time
— T T T T T T

add fetch decode execute memory

nand fetch execute memory writeback

If not careful, you read the wrong value of

Kavita Bala, Computer Science, Cornell University

Data Hazards: AL ops

time
T T T T T T

add fetch decode execute memory

JAN JAN JAN JAN
A U S =7
< =] ><d > < >
nand L K (= <C)= fetch

If not careful, you read the wrong value of

Kavita Bala, Computer Science, Cornell University

Data Hazards: AL ops

time
— T T T T T T

add fetch decode execute memory

JAN JAN A
> T = <7 X> <
d > > [
nan d CQ g: :: fetch execute n

If not careful, you read the wrong value of

Kavita Bala, Computer Science, Cornell University

Data Hazards: AL ops

time
T T T T T T

add fetch decode memory writeback

vAg _
nand <‘DCv>Q‘> fetch execute memory writeback

If not careful, you read the wrong value of

Kavita Bala, Computer Science, Cornell University

Data Hazards: AL ops

time
— T T T T T T

add fetch decode memory writeback

nand fetch decode memory writeback

Kavita Bala, Computer Science, Cornell University

Data Hazards: AL ops

add 1 2
and 8 0 2
nand 5 4

time
T T T T T T

add fetch decode execute memory

add fetch decode execute | memory writeback

nand fetch execute memory writeback

Kavita Bala, Computer Science, Cornell University

Forwarding lllustration

add

nand $5 $

Kavita Bala, Computer Science, Cornell University

Data Hazards: AL ops

time
T T T T T T

add fetch decode execute memory

add fetch decode execute memory | writeback

add fetch decode execute | memory writeback

nand fetch execute memory v
Write in first half of cycle, read in second half of cycle

Kavita Bala, Computer Science, Cornell University

Data Hazards: Iw

Iw 12(zero)
and 8 0 2
nand 5 4

time

|W fetch decode execute memory

add fetch decode execute emory writeback

nand fetch execute memory writeback

Kavita Bala, Computer Science, Cornell University

Data Hazards: Iw

Iw 12(zero)
and 8 0 2
nand 5 4

time
T T T T T T

|W fetch decode execute writeback
add fetch decode execute | memory writeback

nand fetch decode memory writeback

Kavita Bala, Computer Science, Cornell University

Data Hazards: Iw

Iw 12(zero)

And n_n

(PN V]

S
nand 5 4

v —

time
— T T T T T T

|W fetch decode execute writeback

A
N
nand :"> fetch decode memory writeback
v

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards: Summary
* Forward:

— New bypass datapaths route computed data to
where it is needed

» Beware: Stalling may still be required even
in the presence of forwarding

Kavita Bala, Computer Science, Cornell University

Handling Data Hazards: Detection

* Detection

— Compare regA with previous DestReg
(5 bits in MIPS)

— Compare regB with previous DestReg
(5 bits in MIPS)

Kavita Bala, Computer Science, Cornell University

A tricky case

Kavita Bala, Computer Science, Cornell University

11

Slides thanks to Sally V\!CQE

Another tricky case

Kavita Bala, Computer Science, Cornell University

12

Handling Data Hazards: Forwarding

* No point forwarding to decode
* Forward to EX stage

* From output of ALU and MEM stages

Kavita Bala, Computer Science, Cornell University

Sample Code

Which data hazards do you see?
add 31 2
nand5 3 4
add 76 3
lw 6 24(3)
sw 6 12(2)

Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

13

Sample Code

Which data hazards do you see?
add 3\1‘ 2
nand 5\43 4
add 76 3
lw 6\24(3)
sw 6 12(2)

Kavita Bala, Computer Science, Cornell University
Slides thanks to Sally McKee

First half of cycle 3

IF/
Slides thanks to Sally V\!CQE

14

IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

End of cycle 3

First half of cycle 4

15

IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

Register file

End of cycle 4

First half of cycle 5

16

Handling Data Hazards: Stalling

Kavita Bala, Computer Science, Cornell University

End of cycle 5

IF/
Slides thanks to Sally V\!CQE

17

IF/
Slides thanks to Sally V\!CQE

First half of cycle 6

End of cycle 6

18

IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

First half of cycle 7

End of cycle 7

19

IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

First half of cycle 8

1D/ =4
Kavita Bala, Cofsp)er Science, Cornell Universitf\/] @)

End of cycle 8

20

Control Hazards

® Stall

— Inject NOPs into the pipeline when the next instruction is not
known

— Pros: simple, clean; Cons: slow

® Delay Slots

— Tell the programmer that the N instructions after a jump will always
be executed, no matter what the outcome of the branch

— Pros: The compiler may be able to fill the slots with useful
instructions; Cons: breaks abstraction boundary

® Speculative Execution
— Insert instructions into the pipeline

— Replace instructions with NOPs if the branch comes out opposite
of what the processor expected

— Pros: Clean model, fast; Cons: complex

Kavita Bala, Computer Science, Cornell University

Kavita Bala, Computer Science, Cornell University

21

