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Basic Pipelining

Five stage “RISC” load-store architecture
1. Instruction fetch (IF)
e getinstruction from memory

2. Instruction Decode (ID)
» translate opcode into control signals and read regs

3. Execute (EX)
o perform ALU operation

4. Memory (MEM)
» Access memory if load/store

5. Writeback (WB)
* update register file

Following slides thanks to Sally McKee

Kavita Bala, Computer Science, Cornell University




Pipelining Recap

* Powerful technique for masking latencies
— Logically, instructions execute one at a time

— Physically, instructions execute in parallel
= Instruction level parallelism

* Decouples the processor model from the
Implementation
— Interface vs. implementation

* BUT dependencies between instructions
complicate the implementation

Kavita Bala, Computer Science, Cornell University

Kavita Bala, Computer Science, Cornell University

Slides thanks to Sally McKee



Time Graphs
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What can go wrong?

® Structural hazards

— Two instructions in the pipeline try to simultaneously
access the same resource

» Data hazards
— A required operand is not ready
— Usually because a previous instruction in the pipeline
has not committed it to the register file yet
* Control hazards
— The next instruction to fetch cannot be determined

— Usually because a jump or branch instruction has not
determined the next PC yet
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What Can Go Wrong?

» Data hazards
— register reads occur in stage 2
— register writes occur in stage 5

— could read the wrong value if is about to be
written

e Control hazards

— branch instruction may change the PC in
stage 4

— what do we fetch before that?
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Different type of Hazards

» Use register value in subsequent
instruction

add

nand 5
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Data Hazards: AL ops

time
— T T T T T T

add fetch  decode execute memory

nand fetch execute memory writeback

If not careful, you read the wrong value of
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Data Hazards: AL ops

time
T T T T T T

add fetch  decode execute memory

JAN JAN JAN JAN
A U S =7
< =] ><d > < >
nand L K (= <C )= fetch

If not careful, you read the wrong value of

Kavita Bala, Computer Science, Cornell University




Data Hazards: AL ops

time
— T T T T T T

add fetch  decode execute memory

JAN JAN A
> T = <7 X> <
d > > [
nan d CQ g: :: fetch execute n

If not careful, you read the wrong value of
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Data Hazards: AL ops

time
T T T T T T

add fetch  decode memory writeback

vAg _
nand <‘DCv>Q‘> fetch execute memory writeback

If not careful, you read the wrong value of
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Data Hazards: AL ops

time
— T T T T T T

add fetch  decode memory writeback

nand fetch decode memory writeback
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Data Hazards: AL ops

add 1 2
and 8 0 2
nand 5 4

time
T T T T T T

add fetch  decode execute memory

add fetch  decode execute | memory writeback

nand fetch execute memory writeback
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Forwarding lllustration

add

nand $5 $
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Data Hazards: AL ops

time
T T T T T T

add fetch  decode execute memory

add fetch  decode execute memory | writeback

add fetch  decode execute | memory writeback

nand fetch execute memory v
Write in first half of cycle, read in second half of cycle
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Data Hazards: Iw

Iw 12(zero)
and 8 0 2
nand 5 4

time

|W fetch  decode execute memory

add fetch  decode execute emory writeback

nand fetch execute memory writeback
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Data Hazards: Iw

Iw 12(zero)
and 8 0 2
nand 5 4

time
T T T T T T

|W fetch  decode execute writeback
add fetch  decode execute | memory writeback

nand fetch  decode memory writeback
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Data Hazards: Iw

Iw 12(zero)

And n_n

(PN V]

S
nand 5 4

v —

time
— T T T T T T

|W fetch  decode execute writeback

A
N
nand :"> fetch  decode memory writeback
v
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Handling Data Hazards: Summary
* Forward:

— New bypass datapaths route computed data to
where it is needed

» Beware: Stalling may still be required even
in the presence of forwarding
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Handling Data Hazards: Detection

* Detection

— Compare regA with previous DestReg
(5 bits in MIPS)

— Compare regB with previous DestReg
(5 bits in MIPS)
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A tricky case
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Slides thanks to Sally V\!CQE

Another tricky case
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Handling Data Hazards: Forwarding

* No point forwarding to decode
* Forward to EX stage

* From output of ALU and MEM stages
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Sample Code

Which data hazards do you see?
add 31 2
nand5 3 4
add 76 3
lw 6 24(3)
sw 6 12(2)
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Sample Code

Which data hazards do you see?
add 3\1‘ 2
nand 5\43 4
add 76 3
lw 6\24(3)
sw 6 12(2)
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First half of cycle 3

IF/
Slides thanks to Sally V\!CQE
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IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

End of cycle 3

First half of cycle 4
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IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

Register file

End of cycle 4

First half of cycle 5
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Handling Data Hazards: Stalling
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End of cycle 5

IF/
Slides thanks to Sally V\!CQE
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IF/
Slides thanks to Sally V\!CQE

First half of cycle 6

End of cycle 6
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IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

First half of cycle 7

End of cycle 7
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IF/
Slides thanks to Sally hl\ch

IF/
Slides thanks to Sally V\!CQE

First half of cycle 8

1D/ =4
Kavita Bala, Cofsp)er Science, Cornell Universitf\/] @)

End of cycle 8
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Control Hazards

® Stall

— Inject NOPs into the pipeline when the next instruction is not
known

— Pros: simple, clean; Cons: slow

® Delay Slots

— Tell the programmer that the N instructions after a jump will always
be executed, no matter what the outcome of the branch

— Pros: The compiler may be able to fill the slots with useful
instructions; Cons: breaks abstraction boundary

® Speculative Execution
— Insert instructions into the pipeline

— Replace instructions with NOPs if the branch comes out opposite
of what the processor expected

— Pros: Clean model, fast; Cons: complex
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