
1

CS 316:
Procedure Calls/Pipelining

Kavita Bala
Fall 2007

Computer Science
Cornell University

Kavita Bala, Computer Science, Cornell University

Announcements

• PA 3 IS out today
– Lectures on it this Fri and next Tue/Thu
– Due on the Friday after Fall break

2

Kavita Bala, Computer Science, Cornell University

Procedures

• Enable code to be reused by allowing code
snippets to be invoked

• Will need a way to
– call the routine
– pass arguments to it

fixed length
variable length
Recursive calls

– return value to caller
– manage registers

Kavita Bala, Computer Science, Cornell University

Call Stacks
• A call stack contains activation

records (aka stack frames)

• Each activation record contains
– the return address for that

invocation
– the local variables for that

procedure

sp

Laftercall1

Linside

high mem

low mem

3

Kavita Bala, Computer Science, Cornell University

Take 3: JAL/JR with Activation Records

main:
jal mult

Laftercall1:
add $1,$2,$3

jal mult
Laftercall2:

sub $3,$4,$5

• Stack used to save and restore contents of $31

mult:
addiu sp,sp,-4
sw $31, 0(sp)
beq $4, $0, Lout
...
jal mult

Linside:
…

Lout:
lw $31, 0(sp)
addiu sp,sp,4
jr $31

Kavita Bala, Computer Science, Cornell University

Simple Argument Passing
• First four arguments are

passed in registers
– Specifically, $4, $5, $6 and

$7, aka a0, a1, a2, a3
• The returned result is

passed back in a register
– Specifically, $2, aka v0

main:
li a0, 6
li a1, 7
jal min
// result in v0

4

Kavita Bala, Computer Science, Cornell University

Variable Length Arguments
• Best to use an (initially confusing but

ultimately simpler) approach:
– Pass the first four arguments in registers, as usual
– Pass the rest on the stack
– Reserve space on the stack for all arguments,

including the first four

• Simplifies functions that use variable-length
arguments
– Store a0-a3 on the slots allocated on the stack,

refer to all arguments through the stack

Kavita Bala, Computer Science, Cornell University

Register Layout on Stack
• First four

arguments are in
registers

• The rest are on
the stack

• There is room on
the stack for the
first four
arguments, just
in case

main:
li a0, 0
li a1, 1
li a2, 2
li a3, 3
addiu sp,sp,-24
li $8, 4
sw $8, 16(sp)
li $8, 5
sw $8, 20(sp)
jal subf
// result in v0

sp

4
space for a3

space for a2

space for a1

space for a0

5

5

Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

sp

4
space for a3

space for a2

space for a1

space for a0

5

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

…

}

Kavita Bala, Computer Science, Cornell University

Frame Pointer
• It is sometimes cumbersome to keep track of

location of data on the stack
– The offsets change as new values are pushed

onto and popped off of the stack

• Keep a pointer to the top of the stack frame
– Simplifies the task of referring to items on the

stack

• A frame pointer, $30, aka fp
– Value of sp upon procedure entry
– Can be used to restore sp on exit

6

Kavita Bala, Computer Science, Cornell University

Frame Pointer

Kavita Bala, Computer Science, Cornell University

Register Usage
• Callee-save

– Save it if you modify it
– Assumes caller needs it
– Save the previous contents of the register on

procedure entry, restore just before procedure return
– E.g. $31 (if you are a non-leaf… what is that?)

• Caller-save
– Save it if you need it after the call
– Assume callee can clobber any one of the registers
– Save contents of the register before proc call
– Restore after the call

7

Kavita Bala, Computer Science, Cornell University

Caller vs Callee tradeoff

• What is tradeoff?
– If all caller save, could be waste
– If all callee save, could be waste

• MIPS supports both

• Callee-save regs: $16-$23 (s0-s7)
• Caller-save regs: $8-$15,$24,$25 (t0-t9)

Kavita Bala, Computer Science, Cornell University

Leaf vs. non-leaf
• Leaf

– Simple, fast
– Don’t save registers

• int f(int x, int y) {return (x+y);}

• f: add $v0, $a0, $a1 # add x and y
• j $ra # return

8

Kavita Bala, Computer Science, Cornell University

Callee-Save
• Assume caller is using

the registers
• Save on entry, restore

on exit

• Pays off if caller is
actually using the
registers, else the save
and restore are wasted

mult:
addiu sp,sp,-12
sw $31,8(sp)
sw $17, 4(sp)
sw $16, 0(sp)

…
[use $17 and $16]

…
lw $31,8(sp)
lw $17, 4(sp)
lw $16, 0(sp)
addiu sp,sp,12

Kavita Bala, Computer Science, Cornell University

Caller-Save
• Assume registers are free

for the taking
• But other subroutines will

do the same
– must protect values that will

be used later
– save and restore them

before and after subroutine
invocations

• Pays off if a routine makes
few calls to other routines
with values that need to
be preserved

main:
…
[use $9 & $8]
…
addiu sp,sp,-8
sw $9, 4(sp)
sw $8, 0(sp)
jal mult
lw $9, 4(sp)
lw $8, 0(sp)
addiu sp,sp,8
…
[use $9 & $8]

9

Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

sp

arguments

return address

local variables

saved regs

arguments

saved regs

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

orange(10,11,12,13,14);

}

local variables

Kavita Bala, Computer Science, Cornell University

Buffer Overflows

sp

arguments

return address

local variables

saved regs

arguments

saved regs

return address

blue() {

pink(0,1,2,3,4,5);

}

pink() {

orange(10,11,12,13,14);

}

orange() {

char buf[100];

gets(buf); // read string, no check

}

local variables

10

Kavita Bala, Computer Science, Cornell University

Mult example
Main () { int res = mult (a, b);}

int Mult (int a, int b) {
if (b == 0) {return 0;}
else {

res = a + mult (a, b-1);
return res;

}
}

Translates to
Main:

move a0, a
move a1, b
jal mult

Kavita Bala, Computer Science, Cornell University

Mult example
mult: beq $a1, $zer0, Done

addi $sp, $sp, -12
NotDone: sw $ra, 8($sp)

sw $a0,4($sp)
sw $a1,0($sp)
move $a0, $a0
subi $a1, $a1, 1
jal mult
lw $a0,4(sp)
lw $a1,0(sp)
lw $ra,8(sp)
addi $sp, $sp, -12
add v0, $a0, $v0
j Exit

Done: move $v0, $zero
Exit: return $ra

11

Kavita Bala, Computer Science, Cornell University

Preserved vs. Not preserved

• Preserved (Callee Save)
– $s0-$s7
– Save prior to use, restore before return
– $sp, $fp, $gp, $ra

• Not preserved (Caller Save)
– $t0-$t9, $a0-$a3, $v0, $v1
– Saved by caller if needed after proc call

Kavita Bala, Computer Science, Cornell University

MIPS Register Recap
• Return address: $31 (ra)
• Stack pointer: $29 (sp)
• Frame pointer: $30 (fp)
• First four arguments: $4-$7 (a0-a3)
• Return result: $2-$3 (v0-v1)
• Callee-save free regs: $16-$23 (s0-s7)
• Caller-save free regs: $8-$15,$24,$25 (t0-t9)
• Reserved: $26, $27
• Global pointer: $28 (gp)
• Assembler temporary: $1 (at)

12

Kavita Bala, Computer Science, Cornell University

What happens on a call?
• Caller

– Save caller-saved registers $a0-$a3, $t0-$t9
– Load arguments in $a0-$a3, rest passed on stack
– Execute jal

• Callee Setup
– Allocate memory for new frame ($sp = $sp-frame)
– Save callee-saved registers $s0-$s7, $fp, $ra
– Set frame pointer ($fp = $sp + frame size – 4)

• Callee Return
– Place return value in $v0 and $v1
– Restore any callee-saved registers
– Pop stack ($sp = $sp + frame size)
– Return by jr $ra

Kavita Bala, Computer Science, Cornell University

13

Kavita Bala, Computer Science, Cornell University

Foo and Bar
int foo (int num) {
return bar(num+1);

}

int bar (int num) {
return num+1;

}

foo: addiu $sp, $sp, -32 #push frame
sw $ra, 28($sp) #store $ra
sw $fp, 24($sp) #store $fp
addiu $fp, $sp, 28 #set new fp
addiu $a0, $a0, 1 #num + 1
jal bar
lw $fp, 24($sp) #load $fp
lw $ra, 28($sp) #load $ra
addiu $sp, $sp, 32 #pop frame
jr $ra

bar: addiu $v0,$a0,1 #leaf procedure
jr $ra #with no frame

Kavita Bala, Computer Science, Cornell University

Factorial
int fact (int n) {
if (n <= 1) return 1;
return n*fact(n-1);

}

fact: slti $t0, $a0, 2 # a0 < 2
beq $t0,$zero, skip # goto skip
ori $v0, $zero, 1 # return 1
jr $ra

skip: addiu $sp, $sp, -32 # $sp down 32
sw $ra, 28($sp) # save $ra
sw $fp, 24($sp) # save $fp
addiu $fp, $sp, 28 # set up $fp
sw $a0, 32($sp) # save n
addui $a0, $a0, -1 # n = n-1
jal fact

link: lw $a0, 32($sp) # restore n
mul $v0, $v0, $a0 # n * fact (n-1)
lw $ra, 28($sp) # load $ra
lw $fp, 24($sp) # load $fp
addiu $sp, $sp, 32 #pop stack
jr $ra #return

14

Pipelined Architectures

Kavita Bala, Computer Science, Cornell University

• Alice

15

Kavita Bala, Computer Science, Cornell University

• Alice

• Bob

Kavita Bala, Computer Science, Cornell University

• Alice

• Bob

• They don’t like each other!

16

Kavita Bala, Computer Science, Cornell University

The Laundry

• Four sequential tasks

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• A large room with a one entry-door and
one exit-door

17

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• First Alice owns the room

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• First Alice owns the room
• Bob can enter as soon as she is done
• No possibility for Alice and Bob to fight

18

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

• Elapsed Time for Alice: 4
• Elapsed Time for Bob: 4
• Elapsed Time for both: 8
• A better laundry room can improve utilization

and speed up task completion

Time

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• Elapsed Time for Alice: 4
• Elapsed Time for Bob: 4
• Elapsed Time for both: 5!!!

Time

19

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

• The room is partitioned into stages
• One person owns a stage at a time, the

room can hold up to four people
simultaneously

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Alice

20

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Bob Alice

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Bob AliceCharlie

21

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Bob AliceCharlieDave

Kavita Bala, Computer Science, Cornell University

Throughput is good

• What about latency?

22

Kavita Bala, Computer Science, Cornell University

Look at Real Possible Numbers

• 15 min

• 30 min

• 45 min

• 90 min

Kavita Bala, Computer Science, Cornell University

Impact

• Latency: 180 min
• Throughput: Batch every 90 min

– Bottleneck!

stall stall stall

23

Kavita Bala, Computer Science, Cornell University

• Latency: ?
• Throughput: Batch every 45 minutes

Kavita Bala, Computer Science, Cornell University

Implications
• Principle: Latencies can be masked by

running isolated operations in parallel

• Need mechanisms for isolation

• Need mechanisms for handling dependencies
between tasks

• Let’s apply this principle to processor
design…

