CS 316:
Procedure Calls/Pipelining

Kavita Bala
Fall 2007
Computer Science
Cornell University

Announcements

* PA 3 IS out today
— Lectures on it this Fri and next Tue/Thu
— Due on the Friday after Fall break

Kavita Bala, Computer Science, Cornell University

Procedures

» Enable code to be reused by allowing code
snippets to be invoked

e Will need a way to
— call the routine
— pass arguments to it
= fixed length
= variable length
= Recursive calls
—return value to caller

— manage registers

Kavita Bala, Computer Science, Cornell University

Call Stacks

e A call stack contains activation
records (aka stack frames) high mem

e Each activation record contains Laftercalll

— the return address for that
invocation

— the local variables for that
procedure

Linside

low mem

Kavita Bala, Computer Science, Cornell University

JAL/JR with Activation Records

mult:
main: addiu sp,sp,-4
jal mult sw $31, 0(sp)
Laftercalll: beq $4, $0, Lout
add $1,$2,%$3
jal mult
jal mult Linside:

Laftercall2:

sub $3,$4,$5 Lout:
Iw $31, O(sp)

addiu sp,sp,4
ir $31

e Stack used to save and restore contents of $31

Kavita Bala, Computer Science, Cornell University

Simple Argument Passing

 First four arguments are
passed in registers
— Specifically, $4, $5, $6 and
$7, aka a0, al, a2, a3
li 20, 6 e The returned result is
lial, 7 . .
o passed back in a register
/I result in vO — Specifically, $2, aka vO

Kavita Bala, Computer Science, Cornell University

Variable Length Arguments

Best to use an (initially confusing but
ultimately simpler) approach:

— Pass the first four arguments in registers, as usual
— Pass the rest on the stack

— Reserve space on the stack for all arguments,
including the first four

Simplifies functions that use variable-length
arguments

— Store a0-a3 on the slots allocated on the stack,
refer to all arguments through the stack

Kavita Bala, Computer Science, Cornell University

Register Layout on Stack

 First four
) arguments are in
main: 0 t rs
06 registe

lial, 1 The rest are on

space for a3

lia2,2 o the stack
|i a3, 3 space Tor a.

addiu 5p.5p.-24 space for al There is room on
li $8, 4 space for a0 the stack for the
sw $8, 16(sp) first four

li $8, 5 arguments, just

sw $8, 20(sp) in case
jal subf
/ result in vO

Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

blue() {
5 pink(0,1,2,3,4,5);
¢ }

space for a3
space for a2 pin k() {

space for al
space for a0

return address

Kavita Bala, Computer Science, Cornell University

Frame Pointer

It is sometimes cumbersome to keep track of
location of data on the stack

— The offsets change as new values are pushed
onto and popped off of the stack

Keep a pointer to the top of the stack frame

— Simplifies the task of referring to items on the
stack

« A frame pointer, $30, aka fp
— Value of sp upon procedure entry
— Can be used to restore sp on exit

Kavita Bala, Computer Science, Cornell University

Frame Pointer

Saved arguments | Higher addresses

First word of frame $£fp| Saved return address

Saved registers
(if any) Stack grows downwards

Local Arrays and
Structures
(if any)
Last word of frame $sp

Lower addresses

Kavita Bala, Computer Science, Cornell University

Register Usage

» Callee-save
— Save it if you modify it
— Assumes caller needs it

— Save the previous contents of the register on
procedure entry, restore just before procedure return

— E.g. $31 (if you are a non-leaf... what is that?)

» Caller-save
— Save it if you need it after the call
— Assume callee can clobber any one of the registers
— Save contents of the register before proc call
— Restore after the call

Kavita Bala, Computer Science, Cornell University

Caller vs Callee tradeoff

What is tradeoff?
— If all caller save, could be waste
— If all callee save, could be waste

MIPS supports both

Callee-save regs: $16-$23 (s0-s7)
Caller-save regs: $8-$15,%$24,$25 (t0-t9)

Kavita Bala, Computer Science, Cornell University

Leaf vs. non-leaf

Leaf
— Simple, fast
— Don’t save registers

int f(int x, inty) {return (x+y);}

f: add $v0, $a0, $al # add x and y
j $ra # return

Kavita Bala, Computer Science, Cornell University

Callee-Save

» Assume caller is using
addi sp.sp.-12 the registers

sw $31,8(sp) e Save on entry, restore

sw $17, 4(sp) on eXit
sw $16, 0(sp)

mult:

[use $17 and $16] e Pays off if caller is

Iw $31.8(5p) actl_JaIIy using the
Iw $17, 4(sp) registers, else the save

Iw $16, 0(sp) and restore are wasted
addiu sp,sp,12

Kavita Bala, Computer Science, Cornell University

Caller-Save

» Assume registers are free
for the taking

e But other subroutines will
do the same

— must protect values that will
be used later

— save and restore them _
before and after subroutine

main:

[use $9 & $8]

addiu sp,sp,-8
sw $9, 4(sp)
sw $8, 0(sp)

jal mult invocations

Iw $9, 4(sp) « Pays off if a routine makes

lwﬂf& 0(sp) fe_vv calls to other routines
addiu sp,sp,8 with values that need to

be preserved
[use $9 & $8]

Kavita Bala, Computer Science, Cornell University

Frame Layout on Stack

blue() {
i s pink(0,1,2,3,4,5);
arguments
return address }
local variables plnk() {
saved regs orange(10,11,12,13,14);

arguments
return address

local variables

Kavita Bala, Computer Science, Cornell University

Buffer Overflows

blue() {
saved regs pink(0,1,2,3,4,5);

arguments
return address }

local variables p'nk() {
SHANEL orange(10,11,12,13,14);
arguments
}
return address
local variables Orange() {
char buf[100];
gets(buf); // read string, no check

¥

Kavita Bala, Computer Science, Cornell University

Mult example

Main () { intres = mult (a, b);}

int Mult (int a, int b) {
if (b == 0) {return 0;}
else {
res = a + mult (a, b-1);
return res;
}
}

Translates to
Main:
move a0, a
move al, b
jal mult

Kavita Bala, Computer Science, Cornell University

Mult example

mult: beq $al, $zer0, Done
addi $sp, $sp, -12
NotDone: sw $ra, 8($sp)
sw $a0,4($sp)
——sw3atO@sp——
—move-atat—
subi $al, $a1, 1
jal mult
Iw $a0,4(sp)
—-Setetsp—
Iw $ra,8(sp)
addi $sp, $sp, -12
add vO, $a0, $v0
j Exit
Done: move $v0, $zero
Exit: return $ra

Kavita Bala, Computer Science, Cornell University

10

Preserved vs. Not preserved

* Preserved (Callee Save)
— $s0-$s7
— Save prior to use, restore before return
— $sp, $fp, $gp, $ra

* Not preserved (Caller Save)

— $t0-$t9, $a0-%a3, $v0, $vi
— Saved by caller if needed after proc call

Kavita Bala, Computer Science, Cornell University

MIPS Register Recap

Return address: $31 (ra)

Stack pointer: $29 (sp)

Frame pointer: $30 (fp)

First four arguments: $4-$7 (a0-a3)

Return result: $2-$3 (v0-v1)

Callee-save free regs: $16-$23 (s0-s7)
Caller-save free regs: $8-$15,$24,$25 (t0-19)
Reserved: $26, $27

Global pointer: $28 (gp)

Assembler temporary: $1 (at)

Kavita Bala, Computer Science, Cornell University

11

What happens on a call?

» Caller
— Save caller-saved registers $a0-$a3, $t0-$t9
— Load arguments in $a0-$a3, rest passed on stack
— Execute jal
» Callee Setup
— Allocate memory for new frame ($sp = $sp-frame)
— Save callee-saved registers $s0-$s7, $fp, $ra
— Set frame pointer ($fp = $sp + frame size — 4)
» Callee Return
— Place return value in $v0 and $v1
— Restore any callee-saved registers
— Pop stack ($sp = $sp + frame size)
— Return by jr $ra

Kavita Bala, Computer Science, Cornell University

: FP | — First four arguments
Before call: SP passed in registers

ilg

Callee

setup; step 1 Adjust SP

Callee ra Save registers as needed

setup; step 2 old fp
P P Bs0-$s7

Adjust FP

setup; step 3

Kavita Bala, Computer Science, Cornell University

Foo and Bar

int foo (int num) { foo: addiu $sp, $sp, -32 #push frame
return bar(num+1); sw $ra, 28($sp) #store $ra
} sw $fp, 24($sp) #store $fp
addiu $fp, $sp, 28 #set new fp
addiu $a0, $a0, 1 #num +1
int bar (int num) { jal bar
return num+1,; Iw $fp, 24($sp) #load $fp
} Iw $ra, 28($sp) #load $ra
addiu $sp, $sp, 32 #pop frame
jr $ra

bar: addiu $v0,$a0,1 #leaf procedure
jr $ra #with no frame

Kavita Bala, Computer Science, Cornell University

Factorial

int fact (int n) { fact: slti $t0, $a0, 2 #a0<?2
. . beq $t0,%zero, skip # goto skip
if (n S= 1) return 1; ori $vO, $zero,1 #return 1
return n*fact(n-1); jr $ra
skip: addiu $sp, $sp, -32 # $sp down 32
} sw $ra, 28($sp) # save $ra
sw $fp, 24($sp) # save $fp
addiu $fp, $sp, 28 # set up $fp
sw $a0, 32($sp) #save n
addui $a0, $a0, -1 #n=n-1
jal fact
link: lw $a0, 32($sp) # restore n
mul $v0, $v0, $a0 # n * fact (n-1)
Iw $ra, 28($sp) # load $ra
Iw $fp, 24($sp) # load $fp
addiu $sp, $sp, 32 #pop stack
jr $ra #return

Kavita Bala, Computer Science, Cornell University

Pipelined Architectures

Kavita Bala, Computer Science, Cornell University

14

Kavita Bala, Computer Science, Cornell University

* They don't like each other!

Kavita Bala, Computer Science, Cornell University

15

The Laundry

e Q- #
S :
\
. (e7)

» Four sequential tasks

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

[[
T G

2
— /i

» A large room with a one entry-door and
one exit-door

Kavita Bala, Computer Science, Cornell University

16

Laundry Room Design #1

SR =
e
(/)

S

e First Alice owns the room

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #1

» First Alice owns the room
 Bob can enter as soon as she is done
* No possibility for Alice and Bob to fight

Kavita Bala, Computer Science, Cornell University

17

Laundry Room Design #1

» Elapsed Time for Alice: 4
» Elapsed Time for Bob: 4
» Elapsed Time for both: 8

* A better laundry room can improve utilization
and speed up task completion

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

» Elapsed Time for Alice: 4
» Elapsed Time for Bob: 4
» Elapsed Time for both:

Kavita Bala, Computer Science, Cornell University

18

Laundry Room Design #2

* The room is partitioned into stages

» One person owns a stage at a time, the
room can hold up to four people
simultaneously

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Kavita Bala, Computer Science, Cornell University

19

Laundry Room Design #2

Kavita Bala, Computer Science, Cornell University

Laundry Room Design #2

Charlie

Kavita Bala, Computer Science, Cornell University

20

Laundry Room Design #2

Charlie

Kavita Bala, Computer Science, Cornell University

Throughput is good

* What about latency?

Kavita Bala, Computer Science, Cornell University

21

Look at Real Possible Numbers

15 min

30 min

45 min

90 min

Kavita Bala, Computer Science, Cornell University

':s‘-a» =
y '
—d ’. S\)

stall stall

e Latency: 180 min

e Throughput: Batch every 90 min
— Bottleneck!

Kavita Bala, Computer Science, Cornell University

e Latency: ?
e Throughput: Batch every 45 minutes

Kavita Bala, Computer Science, Cornell University

Implications

Principle: Latencies can be masked by
running isolated operations in parallel

Need mechanisms for isolation

Need mechanisms for handling dependencies
between tasks

Let’s apply this principle to processor
design...

Kavita Bala, Computer Science, Cornell University

23

