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Announcements

* PA 3 IS out today
— Lectures on it this Fri and next Tue/Thu
— Due on the Friday after Fall break
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Procedures

» Enable code to be reused by allowing code
snippets to be invoked

e Will need a way to
— call the routine
— pass arguments to it
= fixed length
= variable length
= Recursive calls
—return value to caller

— manage registers
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Call Stacks

e A call stack contains activation
records (aka stack frames)  high mem

e Each activation record contains Laftercalll

— the return address for that
invocation

— the local variables for that
procedure

Linside

low mem
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JAL/JR with Activation Records

mult:
main: addiu sp,sp,-4
jal mult sw $31, 0(sp)
Laftercalll: beq $4, $0, Lout
add $1,$2,%$3
jal mult
jal mult Linside:

Laftercall2:

sub $3,$4,$5 Lout:
Iw $31, O(sp)

addiu sp,sp,4
ir $31

e Stack used to save and restore contents of $31
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Simple Argument Passing

 First four arguments are
passed in registers
— Specifically, $4, $5, $6 and
$7, aka a0, al, a2, a3
li 20, 6 e The returned result is
lial, 7 . .
o passed back in a register
/I result in vO — Specifically, $2, aka vO
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Variable Length Arguments

Best to use an (initially confusing but
ultimately simpler) approach:

— Pass the first four arguments in registers, as usual
— Pass the rest on the stack

— Reserve space on the stack for all arguments,
including the first four

Simplifies functions that use variable-length
arguments

— Store a0-a3 on the slots allocated on the stack,
refer to all arguments through the stack
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Register Layout on Stack

 First four
) arguments are in
main: 0 t rs
06 registe

lial, 1 The rest are on

space for a3

lia2,2 o the stack
|i a3, 3 space Tor a.

addiu 5p.5p.-24 space for al There is room on
li $8, 4 space for a0 the stack for the
sw $8, 16(sp) first four

li $8, 5 arguments, just

sw $8, 20(sp) in case
jal subf
/ result in vO
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Frame Layout on Stack

blue() {
5 pink(0,1,2,3,4,5);
¢ }

space for a3
space for a2 pin k() {

space for al
space for a0

return address
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Frame Pointer

It is sometimes cumbersome to keep track of
location of data on the stack

— The offsets change as new values are pushed
onto and popped off of the stack

Keep a pointer to the top of the stack frame

— Simplifies the task of referring to items on the
stack

« A frame pointer, $30, aka fp
— Value of sp upon procedure entry
— Can be used to restore sp on exit
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Frame Pointer

Saved arguments | Higher addresses

First word of frame $£fp| Saved return address

Saved registers
(if any) Stack grows downwards

Local Arrays and
Structures
(if any)
Last word of frame $sp

Lower addresses
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Register Usage

» Callee-save
— Save it if you modify it
— Assumes caller needs it

— Save the previous contents of the register on
procedure entry, restore just before procedure return

— E.g. $31 (if you are a non-leaf... what is that?)

» Caller-save
— Save it if you need it after the call
— Assume callee can clobber any one of the registers
— Save contents of the register before proc call
— Restore after the call
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Caller vs Callee tradeoff

What is tradeoff?
— If all caller save, could be waste
— If all callee save, could be waste

MIPS supports both

Callee-save regs: $16-$23 (s0-s7)
Caller-save regs: $8-$15,%$24,$25 (t0-t9)
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Leaf vs. non-leaf

Leaf
— Simple, fast
— Don’t save registers

int f(int x, inty) {return (x+y);}

f: add $v0, $a0, $al # add x and y
j $ra # return
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Callee-Save

» Assume caller is using
addi sp.sp.-12 the registers

sw $31,8(sp) e Save on entry, restore

sw $17, 4(sp) on eXit
sw $16, 0(sp)

mult:

[use $17 and $16] e Pays off if caller is

Iw $31.8(5p) actl_JaIIy using the
Iw $17, 4(sp) registers, else the save

Iw $16, 0(sp) and restore are wasted
addiu sp,sp,12
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Caller-Save

» Assume registers are free
for the taking

e But other subroutines will
do the same

— must protect values that will
be used later

— save and restore them _
before and after subroutine

main:

[use $9 & $8]

addiu sp,sp,-8
sw $9, 4(sp)
sw $8, 0(sp)

jal mult invocations

Iw $9, 4(sp) « Pays off if a routine makes

lwﬂf& 0(sp) fe_vv calls to other routines
addiu sp,sp,8 with values that need to

be preserved
[use $9 & $8]
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Frame Layout on Stack

blue() {
i s pink(0,1,2,3,4,5);
arguments
return address }
local variables plnk() {
saved regs orange(10,11,12,13,14);

arguments
return address

local variables

Kavita Bala, Computer Science, Cornell University

Buffer Overflows

blue() {
saved regs pink(0,1,2,3,4,5);

arguments
return address }

local variables p'nk() {
SHANEL orange(10,11,12,13,14);
arguments
}
return address
local variables Orange() {
char buf[100];
gets(buf); // read string, no check

¥
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Mult example

Main () { intres = mult (a, b);}

int Mult (int a, int b) {
if (b == 0) {return 0;}
else {
res = a + mult (a, b-1);
return res;
}
}

Translates to
Main:
move a0, a
move al, b
jal mult
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Mult example

mult: beq $al, $zer0, Done
addi $sp, $sp, -12
NotDone: sw $ra, 8($sp)
sw $a0,4($sp)
——sw3atO@sp——
—move-$at$at—
subi $al, $a1, 1
jal mult
Iw $a0,4(sp)
—-Setetsp—
Iw $ra,8(sp)
addi $sp, $sp, -12
add vO, $a0, $v0
j Exit
Done: move $v0, $zero
Exit: return $ra
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Preserved vs. Not preserved

* Preserved (Callee Save)
— $s0-$s7
— Save prior to use, restore before return
— $sp, $fp, $gp, $ra

* Not preserved (Caller Save)

— $t0-$t9, $a0-%a3, $v0, $vi
— Saved by caller if needed after proc call
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MIPS Register Recap

Return address: $31 (ra)

Stack pointer: $29 (sp)

Frame pointer: $30 (fp)

First four arguments: $4-$7 (a0-a3)

Return result: $2-$3 (v0-v1)

Callee-save free regs: $16-$23 (s0-s7)
Caller-save free regs: $8-$15,$24,$25 (t0-19)
Reserved: $26, $27

Global pointer: $28 (gp)

Assembler temporary: $1 (at)
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What happens on a call?

» Caller
— Save caller-saved registers $a0-$a3, $t0-$t9
— Load arguments in $a0-$a3, rest passed on stack
— Execute jal
» Callee Setup
— Allocate memory for new frame ($sp = $sp-frame)
— Save callee-saved registers $s0-$s7, $fp, $ra
— Set frame pointer ($fp = $sp + frame size — 4)
» Callee Return
— Place return value in $v0 and $v1
— Restore any callee-saved registers
— Pop stack ($sp = $sp + frame size)
— Return by jr $ra
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: FP | — First four arguments
Before call: SP passed in registers

ilg

Callee

setup; step 1 Adjust SP

Callee ra Save registers as needed

setup; step 2 old fp
P P Bs0-$s7

Adjust FP

setup; step 3
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Foo and Bar

int foo (int num) { foo: addiu $sp, $sp, -32 #push frame
return bar(num+1); sw $ra, 28($sp) #store $ra
} sw $fp, 24($sp) #store $fp
addiu $fp, $sp, 28 #set new fp
addiu $a0, $a0, 1 #num +1
int bar (int num) { jal bar
return num+1,; Iw $fp, 24($sp) #load $fp
} Iw $ra, 28($sp) #load $ra
addiu $sp, $sp, 32 #pop frame
jr $ra

bar: addiu $v0,$a0,1 #leaf procedure
jr $ra #with no frame
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Factorial

int fact (int n) { fact: slti $t0, $a0, 2 #a0<?2
. . beq $t0,%zero, skip # goto skip
if (n S= 1) return 1; ori $vO, $zero,1 #return 1
return n*fact(n-1); jr $ra
skip: addiu $sp, $sp, -32 # $sp down 32
} sw $ra, 28($sp) # save $ra
sw $fp, 24($sp) # save $fp
addiu $fp, $sp, 28 # set up $fp
sw $a0, 32($sp) #save n
addui $a0, $a0, -1 #n=n-1
jal fact
link: lw $a0, 32($sp) # restore n
mul $v0, $v0, $a0 # n * fact (n-1)
Iw $ra, 28($sp) # load $ra
Iw $fp, 24($sp) # load $fp
addiu $sp, $sp, 32 #pop stack
jr $ra #return
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Pipelined Architectures
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* They don't like each other!
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The Laundry
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» Four sequential tasks
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Laundry Room Design #1
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» A large room with a one entry-door and
one exit-door
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Laundry Room Design #1

SR =
e
(/)

S

e First Alice owns the room
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Laundry Room Design #1

» First Alice owns the room
 Bob can enter as soon as she is done
* No possibility for Alice and Bob to fight
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Laundry Room Design #1

» Elapsed Time for Alice: 4
» Elapsed Time for Bob: 4
» Elapsed Time for both: 8

* A better laundry room can improve utilization
and speed up task completion
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Laundry Room Design #2

» Elapsed Time for Alice: 4
» Elapsed Time for Bob: 4
» Elapsed Time for both:
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Laundry Room Design #2

* The room is partitioned into stages

» One person owns a stage at a time, the
room can hold up to four people
simultaneously
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Laundry Room Design #2
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Laundry Room Design #2
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Laundry Room Design #2

Charlie
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Laundry Room Design #2

Charlie
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Throughput is good

* What about latency?
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Look at Real Possible Numbers

15 min

30 min

45 min

90 min
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stall stall

e Latency: 180 min

e Throughput: Batch every 90 min
— Bottleneck!
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e Latency: ?
e Throughput: Batch every 45 minutes
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Implications

Principle: Latencies can be masked by
running isolated operations in parallel

Need mechanisms for isolation

Need mechanisms for handling dependencies
between tasks

Let’s apply this principle to processor
design...
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