the

gamedesigninitiative
at cornell university
Lecture 13
Sprite

Graphics

Graphics Lectures

® Drawing Images
® SpriteBatch interface

® (Coordinates and Transforms

® Drawing Perspective
® (Camera

® Projections

® Drawing Primitives
® (Color and Textures

® Polygons

university

the . P .
: : amedesigninitiative
2 2D Sprite Graphics & gruinitiativ

Graphics Lectures

® Drawing Images

® SpriteBatch interface

® (Coordinates and Transforms

® Drawing Perspective
® (Camera

® Projections

® Drawing Primitives
® (Color and Textures

® Polygons

/

2D Sprite Graphics

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

the . o ege g
gamedesigninitiative
at cornell university

Graphics Lectures

® Drawing Images
® SpriteBatch interface

® (Coordinates and Transforms

o . . ——
Drawing Perspective - ation is PA
® Camera A“‘{ Al ectures
0

® Projections

® Drawing Primitives
® (Color and Textures

® Polygons

he e e .
4 2D Sprite Graphics gamedesigninitiative
at cornell university

Graphics Lectures

® Drawing Images

® SpriteBatch interface

® (Coordinates and Transforms

® Drawing Perspective
® (Camera

® Projections

® Drawing Primitives
® (Color and Textures

® Polygons

/

2D Sprite Graphics

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

the . o ege g
gamedesigninitiative
at cornell university

Take Away for Today

® Coordinate Spaces and drawing
® What 1s screen space? Object space?
® How do we use the two to draw objects?

® Do we need any other spaces as well?

® Drawing Transforms
® What 1s a drawing transform?
® Describe the classic types of transforms.

® List how to use transforms in a game.

6 2D Sprite Graphics

[EE— EE——

11111111111111111111

The SpriteBatch Interface

® In this class we restrict you to 2D graphics

® 3D graphics are much more complicated

® Covered in much more detail in other classes
® Art 1701: Artist tools for 3D Models
® CS 5625: Programming with 3D models

® In LibGDX, use the class SpriteBatch

® Sprite: Pre-rendered 2D (or even 3D) image

® All you do 1s composite the sprites together

[EE— EE——

he e e .
7 2D Sprite Graphics tgamedes1grur‘u’cl.’»Tl’c‘lx‘/e

11111111111111111111

Drawing in 2 Dimensions

® Use coordinate systems
® Each pixel has a coordinate A

® Draw something at a pixel by (2,4)

® Specifying what to draw

® Specifying where to draw

- 4 >
® Do we draw each pixel? (-1,-1) /

® Use a drawing API

® (Given an 1mage; does work
® What LibGDX gives us Y

the . P .
: : amedesigninitiative
8 2D Sprlte GI‘aphICS 5 a% cornell university

Sprite Coordinate Systems

® Screen coordinates: where to paint the image
® Think screen pixels as a coordinate system
® Very important for object rransformations
® Example: scale, rotate, translate
® [n 2D, LibGDX origin 1s bottom left of screen

® Object coordinate: location of pixels in object
® Think of sprite as an 1image file (it often 1s)
® (Coordinates are location of pixels 1n this file

® Unchanged when object moves about screen

at cornell university

he
9 2D Sprite Graphics tgamedes1gnlnl’ﬂr;l’ﬂ\‘/e

Sprite Coordinate Systems

10

Screen: (300,200) R}

Object: (0,0)

>

(0,0)

2D Sprite Graphics

+Xx

the . o ege g
gamedesigninitiative
at cornell university

- =

Historical Coordinate Systems

(0,0)

11

+Xx

Screen: (300,200) ObJect (0, 0)

2D Sprite Graphics

>

- ===
the . o e g
gamedesigninitiative

at cornell university

- =

Historical Coordinate Systems

(0,0)

12

+Xx

Screen: (300,200) ObJect (0, 0)

Mouse coordinates still do this
(see Loading.java 1n labs)

2D Sprite Graphics

>

[EE— EE——

g medes gnnt ative

11111111111111111111

Drawing Sprites

® Basic instructions:
® Set origin for the image in object coordinates
® Give the SpriteBatch a point to draw at

® Screen places origin of 1mage at that point

® What about the other pixels?

® Depends on transformations (rotated? scaled?)

® But these (almost) never affect the origin

® Sometimes we can reset the object origin

he e ey -
13 2D Sprite Graphics tgamede51grur‘u’a.';1’c‘n‘/e

11111111111111111111

Sprite Coordinate Systems

14

Screen: (300,200) R}

Object: (0,0)

>

(0,0)

2D Sprite Graphics

+Xx

the . o ege g
gamedesigninitiative
at cornell university

- =

Sprite Coordinate Systems

15

Screen: (300,200)"; 0 (0

Object: (0,0)

>

(0,0)

2D Sprite Graphics

+Xx

the . o e g
gamedesigninitiative
at cornell university

- =

Sprite Coordinate Systems

16

Screen: (300,200) %
Object: (0,0)

>

(0,0)

2D Sprite Graphics

+Xx

the . o ege g
gamedesigninitiative
at cornell university

- =

Sprite Coordinate Systems

17

Screen: (300,200) \
Object: (0,0)

>

(0,0)

2D Sprite Graphics

+Xx

the . o e g
gamedesigninitiative
at cornell university

- =

Drawing with SpriteBatch

public void draw(float dt) {

spriteBatch.begin();
spriteBatch.draw(imageO);

spriteBatch.draw(imagel, eos.x, pos%);
"

SCreen

SpPiteB&tCh. end(), coordinates

[EE— EE——

he e ey -
18 2D Sprite Graphics tgamede51grur‘u’ﬂat‘we

at cornell university

2D Transforms

® A function 7 : R2—>R?

® “Moves” one set of points to another set of points
® Transforms one “coordinate system” to another

® The new coordinate system 1s the distortion

® Idea: Draw on paper and then “distort” 1t
® Examples: Stretching, rotating, reflecting
® Determines placement of “other” pixels

® Also allows us to get multiple images for free

he e ey -
19 2D Sprite Graphics tgamede51gnlr}l’n.';1’c‘1x‘/e

11111111111111111111

The “Drawing Transform”

® T': object coords — screen coords
® Assume pixel (a,b) in art file 1s blue
® Then screen pixel 7(a,b) 1s blue
® We call 7 the object map

® By default, object space = screen space
® Color of 1mage at (a,b) = color of screen at (a,b)

® By drawing an 1mage, you are fransforming it

® S an 1mage; transformed 1mage 1s 7(S)

[EE— EE——

the . P .
: : amedesigninitiative
20 2D Sprite Graphics & el oo

Example: Translation

® Simplest transformation: 7(v) =v + u
® Shifts object in direction u

® Distance shifted 1s magnitude of u

® Used to place objects on screen
® By default, object origin is screen origin

® 7(v) =v +u places object origin at u

(S)

21 2D Sprite Graphics

the . YR .
gamedesigninitiative
at cornell university

Aside: Matching Your Translation

® Movement is two things

® Animation of the filmstrip
® Translation of the image

® These two must align

¢ Example: Walking
® Foot is point of contact

® “Stays in place” as move

® This constrains translation

® Make movement regular
® Measure distance per frame

® Keep same across frames

the . o e g
gamedesigninitiative
at cornell university

Aside: Matching Your Translation

® Movement is fwo things

® Animation of the filmstrip
® Translation of the image

® These two must align

® Example: Walking
® Foot is point of contact

® “Stays in place” as move

® This constrains translation

® Make movement regular
® Measure distance per frame

® Keep same across frames

the . o e g
gamedesigninitiative

at cornell university

Aside: Matching Your Translation

® Movement is fwo things

® Animation of the filmstrip
® Translation of the image

® These two must align

® Example: Walking
® Foot is point of contact

® “Stays in place” as move

® This constrains translation

® Make movement regular

Point of Distance
® Measure distance per frame contact forward

® Keep same across frames

the . o e g
gamedesigninitiative

at cornell university

Composing Transforms

¢ Example: 7: R?>R?, §: R*>R?

® Assume pixel (a,b) in art file 1s blue

® Transform 7' makes pixel 7(a,b) blue
® Transform SoT makes pixel S(7(a,b)) blue

® Strategy: use transforms as building blocks

25

® Think about what you want to do visually
® Break it into a sequence of transforms

® Compose the transforms together

[EE— EE——

2D Sprite Graphics tg;rmelmedesignini’cir;l’ciye

11111111111111111111

Application: Scrolling

World origin

cornell university

e
26 2D Sprite Graphics gamede51§nm1t1at1ve

Application: Scrolling

World origin

cornell university

27 2D Sprite Graphics tgh%lmedesia%ninitiative

Application: Scrolling

Sereen

World origin

at cornell university

e
28 2D Sprite Graphics gamedesigninitiative

Scrolling: Two Translations

® Place object in the World at point p = (x,»)

® Basic drawing transform 1s 7(v) = v+p

® Suppose Screen originisatq=(x",y")
® Then object 1s on the Screen at point p-q

® S(v) = v-q transforms World coords to Screen

® So7{(v) transforms the Object to the Screen

® This separation makes scrolling easy
® To move the object, change T but leave S same

® To scroll the screen, change S but leave 7' same

29 2D Sprite Graphics

11111111111111111111

Scrolling: Practical Concerns

® Many objects will exists outside screen

® (Can draw 1if want; graphics card will drop them

® |t 1s expensive to keep track of them all

® But is also unrealistic to always 1gnore them

® In graphics, drawing transform = matrix

30

Hence composition = matrix multiplication

Details beyond the scope of this course

Li1bGDX handles all of this for you (sort of)

[EE— EE——

the . P .
: : amedesigninitiative
2D Sprite Graphics & (=R university

-

Using Transforms in LibGDX

® LibGDX has methods for creating transforms
® Two types depending on application
® Affine? for transforming 2D sprites
® Matrix4 for transforming 3D object

® But also for transforming fonts

® Parameters fill in details about transform
® Example: Position (x,y) if a translation

® The most math you will ever need for this

[EE— EE——

the . P .
: : amedesigninitiative
31 2D Sprite Graphics & el oo

Transforms in SpriteBatch

Affine2

Matrix4

® Pass it to a draw command

® Applies only to that image
® Adds to CPU power

® Handles everything
® [ocation is in transform

® Transform to object position

® gsb.draw(image,wd,ht,affine);

® Pass to setTransformMatrix
® Applies to all images!
® Handled by the GPU but...
® (Change causes GPU stall

® Only use this 1f you must
® c¢.g. Transforming fonts

® See GameCanvas in Labl

the . P .
: : amedesigninitiative
3 2 2D Sprlte GI‘aphICS g a% cornell university

Transforms in SpriteBatch

Affine2 Matrix4
® Pass it to a draw command ® Pass to setTransformMatrix
® Applies only to that image ® Applies to all images!

® Adds to CPU power

® Handles everything

® [ocation is in transform

® Handled by the GPU but...
® (Change causes GPU stall

® Only use this 1f you must

® Transform to object position

® gsb.draw(image,wd,ht,affine);

Only supports a
TextureRegion??

J

33

® c¢.g. Transforming fonts

® See GameCanvas in Labl

the . P .
: : amedesigninitiative
2D Sprlte GI‘aphICS g a% cornell university

Positioning in LibGDX

public void draw(float dt) {

Vector? pos = object.getPosition();

spriteBatch.begin();
spriteBatch.draw(image,pos.x,pos.y);
spriteBatch.end();

he
34 2D Sprite Graphics tgamedes1gnlnl’ﬂr;l’ﬂ\‘/e

at cornell university

- =

Positioning in LibGDX

public void draw(float dt) {
Affine? oTran = new Affine?();
oTran.setToTranslation(object.getPosition());
\

Translate origin to
position 1n world.

spriteBatch.begin();
spriteBa,tch.draw(ima,ge,width,height]oTra,n);
spriteBatch.end(); T
) why did they

do this???

the . P .
: : amedesigninitiative
35 2D Sprite Graphics 5 =BT aniversity

- =

[EE— EE——

Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affinel();
oTran.setToTranslation(object.getPosition());
Affine? wtran = new Affine2():)
Vector? wPos = viewWindow.getPosition(); - scrolling
wTran.setToTranslation(-wPos.x,-wPos.y); support
oTran.mul(wTran);

_
spriteBatch.begin();
spriteBatch.draw(image,width,height,oTran);
spriteBatch.end();

the . P .
: : amedesigninitiative
36 2D Sprite Graphics 5 ol coaveny

- =

Transform Gallery

® Uniform Scale: [8 O] [a: } — [Sx]
0 SY

S Y

1.5 0
0 1.5

= ad

K\ affine.setToScaling(s,s); /)

[EE— —

the . e e .
; ; amedesigninitiative
37 2D Sprite Graphics & & ol wvardty

- ===

Transform Gallery

® Uniform Scale: [S O][az}:[sx]
0 s] v sY

15 0
15

h R

affine.setToScaling(s,s);

Represent as
2X2 matrix

[EE— —

38 2D Sprite Graphics gamedes signinitiative

versity

- ===

Matrix Transform Gallery

® Nonuniform Scale: [Sz 0 } { t } — { Sad]
0 Sy Y Syl

1.5 0
0 0.8

R R

affine. setToScallng(sx sy);

[EE— —

39 2D Sprite Graphics gamedes signinitiative

- ===

Matrix Transform Gallery

® Rotation:
- cosf) —sin@ r | | xcost —ysinb
 sinf cost y | | xsinf + ycosb
- 0.866 —0.5
0.5 0.866
\\; affine.setToRotationRad(angle); //

[EE—— —

the . e el .
; ; amedesigninitiative
40 2D Sprlte Gl‘aphICS g a% cornell university

- ===

Matrix Transform Gallery

* Reflection: {—Ol (EH:;:}:{?]

—1 0
® View as special case of Scale [0 1]

R AT

d itiati
2D Sprite Graphics game signini tive

s

Matrix Transform Gallery

s [1][3]- [

R R

affine. setToShearlng(a 1);

[EE—— —

42 2D Sprite Graphics gamedes signinitiative

- ===

Translation Revisited

® Translation is not a linear transform
® To be linear, T(v+w) =T(v)+T(w)
® Translation transform is T(v) = v+u
® T(v)+T(w) = (vtu)+(w+u) = v+tw+2u # T(v+w)

® But LibGDX treats 1t like one

® Affine? transforms support translation

® Matrix4 supports matrix.set(affine)

® What 1s going on here?

[EE— EE——

he e e .
2D Sprite Graphics gamedesigninitiative
at corn ell university

Homogenous Coordinates

® Add an extra dimension to the calculation.
® An extra component w for vectors
® For affine transformations, can keep w = 1

® Add extra row, column to matrices (so 3x3)

® Dimension 1s for calculation only

® We are not in 3D-space yet
® 3D transforms need 4D vectors, 4x4 matrices

® Matrix4 because LibGDX supports 3D

[EE— EE——

he e e .
2D Sprite Graphics gamedesigninitiative
at corn ell university

Homogenous Coordinates

® Linear transforms have dummy row and column

® Translation uses extra column

a b 0
c d 0
OO 1

o O =

o = O

, 7
S
1_

2D Sprite Graphics

X

Y
1

X
Y
1

ax +by
cx + dy
1

r+1
Y+ S

[EE— EE——

the . o ege g
gamedesigninitiative
at corn ell university
- ===

Affine Transforms Revisited

® Affine: Linear on homogenous coords
® Equal to all transforms 7(v) = Mv+p
® Treat everything as matrix multiplication

® Why does this work?

® Area of mathematics called projective geometry
® Far beyond the scope of this class

® LibGDX hides all the messy details
® Just stick with Affine? class for now

[EE— EE——

2D Sprite Graphics tg;rmelmedesignini’cir;l’ciye

11111111111111111111

Affine Transform Gallery

® Translation:

1 0 t,

0 1 ¢ "1 0 215]

00 1 0 1 0.85
0

[EE— —

he TTT
2D Sprite Graphics gamedesigninitiative
at cornell university

- ===

Affine Transform Gallery

® Uniform Scale:

s 0 0 15 0 0
0 s 0 0 15 0
00 1 0 0 1

[EE— —

he TTT
2D Sprite Graphics gamedesigninitiative
at cornell university

- ===

Affine Transform Gallery

® Nonuniform Scale:

Sx

0

0 0
Sy 0

0 0 1

1.5 0 0
0 08 0
0 0 1

2D Sprite Graphics

N
w0000
the . « ege g
gamedesigninitiative
at cornell universif

ty

- ===

Affine Transform Gallery

® Rotation:
- cosf —sinf® O || 0866 —0.5 0
sinff cosf O 0.5 0.8066 0
I 0 0 1 11 0 0 1)

[EE— —

he TTT
2D Sprite Graphics gamedesigninitiative
at cornell university

- ===

Affine Transform Gallery

® Reflection:

® Special case of Scale —1 0 O
0O 1 O
0 0 1

[EE— —

. . the . R
2D Sprite Graphics gamedesigninitiative
at cornell university

- ===

Affine Transform Gallery

® Shear:
1 a 0 1 05 0 |
O 1 O O 1 0
001 _O 0 1_

[EE— —

he TTT
2D Sprite Graphics gamedesigninitiative
at cornell university

- ===

Compositing Transforms

® In general not commutative: order matters!

rotate, then translate translate, then rotate

at cornell university

53 2D Sprite Graphics gamedesigninitiative

Compositing Transforms

® In general not commutative: order matters!

\ 4

scale, then rotate rotate, then scale

at cornell university

54 2D Sprite Graphics gamedesigninitiative

Rotating Object About Center

55

Ty 1 ® Translate center to origin
® Rotate about origin
® Translate to object position
¢ >
(an) TX

the . P .
: : amedesigninitiative
2D Sprite Graphics 5 =BT aniversity

- =

Rotating Object About Center

56

Ty 1 ® Translate center to origin
® Rotate about origin
® Translate to object position
¢ >
(an) TX

the . P .
: : amedesigninitiative
2D Sprlte GI‘aphICS 5 § cornell university

- =

Rotating Object About Center

A [J [J
® Translate center to origin

® Rotate about origin

® Translate to object position

>

+Xx

the . P .
: : amedesigninitiative
2D Sprite Graphics 5 =BT aniversity

Rotating Object About Center

58

A ..
® Translate center to origin

® Rotate about origin

® Translate to final position

>

+Xx

the . P .
: : amedesigninitiative
2D Sprite Graphics 5 =BT aniversity

Rotating Object About Center

59

n 1 ® Translate center to origin
Y
® Rotate about origin
® Translate to final position
¢ >
(an) TX

the . P .
: : amedesigninitiative
2D Sprite Graphics 5 =BT aniversity

- =

A Word About Scaling

® [f making smaller, 1t drops out pixels
® Suppose 7(v) =0.5v
® (0,0)=71(0,0); pixel (0,0) colored from (0,0) 1n file
® (0,1)=1(0,2); pixel (0,1) colored from (0,2) in file

® But if making larger, 1t duplicates pixels
® Suppose 1(v) =2v
® (0,1)=1(0,0.5); pixel (0,1) colored from (0,1) 1n file
® (0,1)=1(0,1); pixel (0,2) colored from (0,1) in file

® This can lead to jaggies

he
60 2D Sprite Graphics tgamede51grur‘u’n.';1’c‘1x‘/e

11111111111111111111

Scaling and Jaggies

® Jaggies: Image is blocky

® Possible to smooth 1image

® Done through blurring
® [n addition to transform

® Some graphic card support

® Solution for games
® Shrinking is okay
® Enlarging not (always) okay

® Make sprite large as needed

61 2D Sprite Graphics

the . « ege g
gamedesigninitiative
at cornell university

Summary

® Drawing is all about coordinate systems

® Object coords: Coordinates of pixels in image file

® Screen coords: Coordinates of screen pixels

® Transforms alter coordinate systems
® “Multiply” image by matrix to distort them
® Multiply transforms together to combine them
® Matrices are not commutative

® Later transforms go on “the right”

he
62 2D Sprite Graphics tgamedes1gmr‘u’cl.’»Tl’c‘lx‘/e

11111111111111111111

