
gamedesigninitiative
at cornell university

the

The Game Loop

Lecture 10



gamedesigninitiative
at cornell university

the

2110-Level Apps are Event Driven

Game Loop

Application

JFrame

@105dc

Listener

method(Event)

Listener

Registers itself
as a listener

Generates event e and then
calls method(e) on listener

2



gamedesigninitiative
at cornell university

the

Limitations of the Event Model

� Program only reacts to user input
� Nothing changes if user does nothing
� Desired behavior for productivity apps

� Games continue without input
� Character animation
� Clock timers
� Enemy AI
� Physics Simulations

Game Loop3



gamedesigninitiative
at cornell university

the

Game Loop4 

The Game Loop

Update

Draw



gamedesigninitiative
at cornell university

the

Game Loop5 

The Game Loop

Update

Draw

Cull non-visible objects
Transform visible objects

Display backing buffer
Draw to backing buffer



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop6 

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop7 

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms



gamedesigninitiative
at cornell university

the

Few Words on Drawing

� Drawing needs to be fast!
� Do as little computation as possible
� But draw as few objects as possible

� Is this a contradiction?
� Need to compute what to draw
� So drawing less has extra overhead

� Rule: do not modify game state in draw
� Any extra computation is local-only

Game Loop8



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop9 

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

Player Input

� Traditional input is event-driven
� Events capture state of controller
� OS/VM generates events for you
� Listeners react to events

� Game loop uses polling for input
� Ask for controller state at start of loop
� Example: What is joystick position?
� If no change, do no actions that loop

Game Loop10



gamedesigninitiative
at cornell university

the

Problem with Polling

� Only one event per update loop
� Multiple events are lost
� Example: Fast typing

� Captures state at beginning
� Short events are lost
� Example: Fast clicks

� Event-driven does not have these problems
� Captures all events as they happen
� But capture still has a frame-rate resolution

Game Loop11



gamedesigninitiative
at cornell university

the

Combining Input Approaches

� LibGDX input is extremely flexible
� Every input type supports events OR polling

� Polling: Input interface
� Access it through the static class GDX.Input
� Allows you to read the input state right now

� Events: InputProcessor interface
� Register it with the appropriate input device
� Works exactly like Swing listeners

Game Loop12



gamedesigninitiative
at cornell university

the

public class MyProcessor implements
         InputProcessor {

      public void keyTyped(char c) { 
           //  Do something with input

      

      }

}

Game Loop13

Problem: Timing

Update

Draw

How do these
fit together?



gamedesigninitiative
at cornell university

the

public class MyProcessor implements
         InputProcessor {

      public void keyTyped(char c) { 
           //  Do something with input

      

      }

}

Game Loop14

Problem: Timing

Update

Draw

How do these
fit together? No control 

over when 
it is invoked



gamedesigninitiative
at cornell university

the

Consumer

Game Loop15

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e 
Lo

op



gamedesigninitiative
at cornell university

the

Consumer

Game Loop16

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e 
Lo

op

Buffer



gamedesigninitiative
at cornell university

the

Consumer

Game Loop17

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e 
Lo

op

Buffer

Answer



gamedesigninitiative
at cornell university

the

Consumer

Game Loop18

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e 
Lo

op

Buffer

Answer

Check

Polling!



gamedesigninitiative
at cornell university

the

Consumer

Game Loop19

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e 
Lo

op

Buffer

Answer

Check

Polling!

Overwriting?



gamedesigninitiative
at cornell university

the

Buffering Input

� If overwriting an issue, need an event queue
� Input processor writes at end of the queue
� Game loop reads from the front of queue

� Generally requires multiple threads
� Event handler is (usually) OS/VM provided thread
� Game loop itself is an additional thread

Game Loop20

event1 event2 event3 •event5event4

Event handler
puts event here

Game loop
reads event here



gamedesigninitiative
at cornell university

the

Event Handlers: Really Necessary?

� Most of the time: No
� Frame rate is short: 16.7 ms
� Most events are > 16.7 ms
� Event loss not catastrophic

� Buffering is sometimes undesirable
� Remembers every action ever done
� But may take a longer time to process
� If takes too long, just want to abort

Game Loop21



gamedesigninitiative
at cornell university

the

Polling

� When game loop is explicit
� Actively animating screen
� Must time input correctly

� Example: playing the game

Game Loop22

Picking the Right Input

Event Driven

� When game loop is implicit
� Art assets are largely static
� Nothing to do if no input

� Example: a menu screen



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop23 

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

Player Actions

� Actions alter the game state
� Can alter player state: movement
� Can alter opponent state: damage

� Player actions correspond to user input
� Choice is determined by input controller
� Else action is performed by computer

� These are your game verbs!

Game Loop24



gamedesigninitiative
at cornell university

the

Abstract Actions from Input

� Actions: functions that modify game state
� move(dx,dy) modifies x, y by dx, dy
� attack(o) attacks opponent o

� Input controller maps input to actions
� Read input state from controller
� Pick an action and call that function

� Input handler should never alter state directly!

Game Loop25



gamedesigninitiative
at cornell university

the

Abstract Actions from Input

� Actions: functions that modify game state
� move(dx,dy) modifies x, y by dx, dy
� attack(o) attacks opponent o

� Input controller maps input to actions
� Read input state from controller
� Converts to an action, returning the result

� Input handler should never alter state directly!
� Input handler only identifies the action

Game Loop26

Design versus
Implementation



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop27 

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

NPC: Non-Player Character

� NPC is an intelligent computer-controlled entity
� Unlike a physics object, it can act, not just interact
� Sometimes called an agent

� NPCs have their own actions/verbs
� But no input controller to choose

� Work on sense-think-act cycle
� Sense: perceive the world around it
� Think: choose an action to perform 
� Act: update the game state

Game Loop28



gamedesigninitiative
at cornell university

the

� Act should be very fast!
� Function to update state
� Example: apply velocity
� Exactly like the player

� Sense-think unique to NPC
� The hard computation
� Focus of AI lectures

� Multiplayer: Replace sense-
think with human decision

Game Loop29

Act versus Sense-Think

Alert!



gamedesigninitiative
at cornell university

the

� Sensing may be slow!
� Consider all objects

� Example: morale
� n knights, n skeletons
� Knights fear skeletons
� Proportional to # seen

� Count skeletons in view
� O(n) to count skeletons
� O(n2) for all units

Problem with Sensing

Time per tick

3 units

2 units

1 unit

Game Loop30



gamedesigninitiative
at cornell university

the

Processing NPCs

� Naïve solution: sequentially

� Problem: NPCs react too fast!
� Each reads the actions of previous
� Even before drawn on screen!

Game Loop31

Player

NPC 1

Draw

NPC 2

NPC 3



gamedesigninitiative
at cornell university

the

Processing NPCs

� Naïve solution: sequentially

� Problem: NPCs react too fast!
� Each reads the actions of previous
� Even before drawn on screen!

� Idea: only react to what can see
� Choose actions, but don’t perform
� Once all chosen, then perform
� Another reason to abstract actions

Game Loop32

Player

NPC 1

COMMIT

NPC 2

NPC 3

Draw



gamedesigninitiative
at cornell university

the

� Decides whether to shoot

� Stores intent in the object

� But DOES NOT shoot

� Waits until objects commit

� Checks intent in Ship object

� Performs action for intent

Game Loop33

Processing Actions in Lab 3

Ship

GameplayController



gamedesigninitiative
at cornell university

the

� Focus of Game Lab 2
� Crucial if top view
� Major area of research

� Potentially very slow
� n NPCs, g grid squares
� Dijkstra: O(g2)
� For each NPC: O(ng2)

� Moving obstacles?
Game Loop34

Problem: Pathfinding



gamedesigninitiative
at cornell university

the

� Focus of Game Lab 2
� Crucial if top view
� Major area of research

� Potentially very slow
� n NPCs, g grid squares
� Dijkstra: O(g2)
� For each NPC: O(ng2)

� Moving obstacles?
Game Loop35

Problem: Pathfinding

Often more than 16.7ms



gamedesigninitiative
at cornell university

the

Game Loop36

Asynchronous Pathfinding

Update

Draw

• Check for request
• Compute answer
• Store in buffer

G
am

e 
Lo

op
Pathing Engine

Request path

Buffer

Answer

Check

Looks like input buffering!

Thread 1 Thread 2



gamedesigninitiative
at cornell university

the

Asynchronous Pathfinding

� NPCs do not get answer right away
� Check every loop until answered

� Remember request; do not ask again

� What to do until then?
� Act, but don’t think!
� If nothing, fake something

� “Stomping Feet” in RTSs

Game Loop37



gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop38 

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

Purpose of a Physics Engine

� Moving objects about the screen
� Kinematics: Without regard to external forces

� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision detection: Did a collision occur?
� Collision resolution: What do we do?

� More on this issue later (~Spring Break)

Game Loop39



gamedesigninitiative
at cornell university

the

Physics Engines: Two Levels

� White Box: Engine corrects movement errors
� Update object state ignoring physics

� Physics engine nudges object until okay

� Black Box: Engine handles everything
� Do not move objects or update state
� Give forces, mass, velocities, etc. to engine

� Engine updates to state that is close enough

Game Loop40



gamedesigninitiative
at cornell university

the

� Almost everything is in loop
� Except asynchronous actions
� Is enough for simple games

� How do we organize this loop?
� Do not want spaghetti code
� Distribute over programmers

Game Loop41 

The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions



gamedesigninitiative
at cornell university

the

Architecture: Organizing Your Code

Game Loop42



gamedesigninitiative
at cornell university

the

Architecture: Organizing Your Code

Implementation

Interface

Implementation

Game Loop43



gamedesigninitiative
at cornell university

the

Where Did This Come From?

Next Time!

Game Loop44


