Lecture 6

Uncertainty & Risk
Uncertainty and Risk

- **Risk**: outcome of action is uncertain
 - Perhaps action has random results
 - May depend upon opponent’s actions
 - Need to know what opponent will do

- Two primary means of risk in a game
 - Chance and **randomness**
 - Imperfect **information**
Uncertainty ≠ Skill

• Outcomes may depend on player skill
 • Hand-eye coordination challenges
 • Reaction-time/twitch challenges
 • Knowledge of optimal strategies

• Varying skill level ➔ uncertain outcomes
 • But challenges themselves are predictable
 • Player can train at challenge over time
 • Not the subject of this lecture
Randomness in Games

• Pure randomness is not a good game
 • Remember coin flipping
 • Player has no *meaningful choice*

• But many games are random
 • *Candyland, Snakes & Ladders*
 • Poker, other forms of gambling
 • Tetris and other matching, stacking games
Randomness: Candy Land
Randomness: Poker
Randomness with Choice

- Tetris pieces are random, but
 - Have a choice in how to position them
 - “Hedge your bets” to prepare for bad drops

- RPG combat is die roll influenced by
 - Armor the defender wears
 - Weapons the attack uses
 - Combat maneuvers employed
Randomness with Choice
Pig: A Random Game

- Play progresses clockwise
- On your turn, throw the die:
 - If roll 1: lose turn, score zero
 - Anything else: add it to score
 - Can also roll again (and lose)
 - If stop, score is “banked”
- First person to 100 wins.
Pig has meaningful choice
- Player can choose to bank
- Risk nothing for a higher score

How is the choice meaningful?
- Certain decisions are better than others
- Certain decisions are more fun than others
- Psychological effect on other players
Expected Value

• Outcome of actions is never the same
 • But the sum averages out over many tries
 • Strategy: compare average outcomes

• Expected Value = outcome × % success
 • If many outcomes, sum them together
 • Example: Average die roll is 3.5
 \[1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5\]

• Only applies if can do action repeatedly
Expected Value of Pig

<table>
<thead>
<tr>
<th># Throws</th>
<th>Survival</th>
<th>Expected Gain</th>
<th>Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83%</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>2</td>
<td>69%</td>
<td>2.78</td>
<td>6.11</td>
</tr>
<tr>
<td>3</td>
<td>58%</td>
<td>2.32</td>
<td>8.43</td>
</tr>
<tr>
<td>4</td>
<td>48%</td>
<td>1.92</td>
<td>10.35</td>
</tr>
<tr>
<td>5</td>
<td>40%</td>
<td>1.61</td>
<td>11.96</td>
</tr>
<tr>
<td>6</td>
<td>33%</td>
<td>1.34</td>
<td>13.30</td>
</tr>
<tr>
<td>7</td>
<td>28%</td>
<td>1.12</td>
<td>14.42</td>
</tr>
<tr>
<td>8</td>
<td>23%</td>
<td>.93</td>
<td>15.35</td>
</tr>
<tr>
<td>9</td>
<td>19%</td>
<td>.77</td>
<td>16.12</td>
</tr>
<tr>
<td>10</td>
<td>16%</td>
<td>.65</td>
<td>16.77</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>50</td>
<td>0.01%</td>
<td>0.0004</td>
<td>19.998</td>
</tr>
</tbody>
</table>
Expected Value and RTS Games
Psychology of Randomness

- Players favor **longshots**
 - Rare event that has very high payoff
 - Will work towards it even if not optimal
 - Especially if failure is cheap

- Players have “Monte Carlo syndrome”
 - After a bad run, expect a good result
 - Otherwise, the game is “unfair”
Psychology of Randomness

- **Payoff** influences the perception
 - Players remember events with bigger payoff
 - Will think it is “more likely”
 - Even if two events equally likely

- **Corollary**: Lightning never strikes twice
 - A bad outcome is unlikely to happen again
 - A good outcome will probably happen again
Psychology of Nonrandomness

- Players can view the nonrandom as random
- **Example**: paper-scissors-rock
Psychology of Nonrandomness

- Players can view the nonrandom as random

- **Example**: paper-scissors-rock
 - Opponent is *uncertain*, not *random*
 - But there is no choice is better than others
 - How do you choose?

- Any game with heavy negative feedback

- “Random” = lack of meaningful choice
Instability vs. Random

- **Physics** can be sensitive!
 - Small input change = big output change
 - Games can “feel random”

- **Instable challenges**
 - Difficult to repeat success
 - Very difficult to tune
 - But popular trend in modern puzzle games
Benefits of Randomness

• Randomness can improve **replayability**
 • Similar actions ≠ similar outcomes
 • Player must adapt if actions fail to pay off
 • Encourages wider exploration of game space

• Basis of modern **RogueLite** movement
 • Content is randomly generated/experienced
 • Each playthrough feels fresh and different
 • But level design is very difficult (**later**)
Should Your Game Have Randomness?

• Do you want to **emphasize strategy**?
 • Common in real-time/turn-based strategies
 • Pay-offs are a strategic cost-benefit decision
 • Randomness keeps strategies from being dominant

• Do you want to **simplify complex systems**?
 • Randomness is often an alternative to **simulation**
 • Makes complete sense in board game setting
 • But computers are good at simulation, so why?
Imperfect Information

- Player may lack information about that game
 - May not know complete game state
 - May not know all of the rules
- Can reason about *likelihood*
 - Rules eliminate certain possibilities
 - Model opponent psychology
 - But less precise than probability
Example: Fog of War
Making Information Imperfect

- **Hide information**
 - Fog of war
 - Hidden moves
 - Hidden die rolls

- **Generate random noise**
 - (Partial) scanner jamming
 - Inaccurate troop measurements
Information Types

- Information known to all players
- Information known to one player
- Information known only to the game
 - Example: the next card in a deck
- Randomly generated information
 - Example: die rolls
Information in Clue
Computers and Information

- Very good at managing information
 - Can easily hide information from players

- Can hide very complex information
 - Humans have hard time hiding and managing
 - Also, too easy to cheat if hidden

- Particularly good at
 - Information known only to one player
 - Information know only to the game
Randomness vs Imperfect Information

- Randomness used heavily in board games
 - Nice way to introduce uncertainty/risk
 - Easier to manage than imperfect information

- But not as important for computer games
 - Imperfect information is easy to manage
 - Complex rules (physics) may seem random

- **Deterministic** rules are easier to tune
 - Even board games realize this (*Puerto Rico*)
Digital vs. Nondigital Games

<table>
<thead>
<tr>
<th>Digital Games</th>
<th>Nondigital Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Advantages</td>
</tr>
<tr>
<td>Hiding Information</td>
<td>“House Rules”</td>
</tr>
<tr>
<td>Complex mechanics</td>
<td>Portability/life span</td>
</tr>
<tr>
<td>Long-distance play</td>
<td>Multiplayer psychology</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>Adaptability</td>
<td>Complex mechanics</td>
</tr>
<tr>
<td>Product life span</td>
<td>Hidden information</td>
</tr>
</tbody>
</table>
Digital vs. Nondigital Games

<table>
<thead>
<tr>
<th>Digital Games</th>
<th>Nondigital Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Advantages</td>
</tr>
<tr>
<td>• Hiding Information</td>
<td>• “House Rules”</td>
</tr>
<tr>
<td>• Complex mechanics</td>
<td>• Portability/life span</td>
</tr>
<tr>
<td>• Long-distance play</td>
<td>• Multiplayer psychology</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>• Adaptability</td>
<td>• Complex mechanics</td>
</tr>
<tr>
<td>• Product life span</td>
<td>• Hidden information</td>
</tr>
</tbody>
</table>

Will return to this with prototyping
Summary

- Uncertainty and risk are **important**
 - Otherwise player is (eventually) unchallenged
 - No possibility of strategic choice

- Ways of introducing uncertainty/risk
 - Through skill-based challenges
 - Through randomness
 - Through incomplete information
 - Latter is primary strength of computers