Lecture 23

Strategic AI
Role of AI in Games

• **Autonomous Characters** (NPCs)
 • Mimics the “personality” of the character
 • May be opponent or support character

• **Strategic Opponents**
 • AI at the “player level”
 • Closest to classical AI

• **Character Dialog**
 • Intelligent commentary
 • Narrative management (e.g. Façade)
Rule-Based AI

If X is true, Then do Y

Three-Step Process

- **Match**
 - For each rule, check if
 - Return all matches

- **Resolve**
 - Can only use one rule
 - Use metarule to pick one

- **Act**
 - Do then-part
Example: Tic-Tac-Toe

- Next move for player O?
 - If have a winning move, make it
 - If opponent can win, block it
 - If the center is available, take it
 - Corners are better than edges

- Very easy to program
 - Just check the board state
 - Tricky part is prioritization
Example: Microsoft’s *Age of Kings*

; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
 (game-time > 1100)
 =>
 (attack-now)
 (enable-timer '7 1100))
)
(defrule
 (timer-triggered '7) (defend-soldier-count >= 12)
 =>
 (attack-now)
 (disable-timer '7)
 (enable-timer '7 1400)
)

Strategic AI
The Problems with Rules

- Rules only do one step
 - May not be best move
 - Could lose long term

- Next move for player O?
 - If can win, then do it
 - If X can win, then block it
 - Take the center if possible
 - Corners > edges

- Need to **look ahead**
The Problems with Rules

- Rules only do one step
 - May not be best move
 - Could lose long term
- Next move for player O?
 - If can win, then do it
 - If X can win, then block it
 - Take the center if possible
 - Corners > edges
- Need to **look ahead**
Multiple Steps: Planning

- **Plan**: actions necessary to reach a goal
 - Goal is a (pseudo) specific game state
 - Actions change game state (e.g. verbs)

- **Planning**: steps to generate a plan
 - **Initial State**: state the game is currently in
 - **Goal Test**: determines if state meets goal
 - **Operators**: action the NPC can perform
What Should We Do?

Pickup?
Shoot?
Pickup?

Slide courtesy of John Laird
Simplification: No Opponent

- Identify desired goal
 - **Ex**: Kill enemy, get gold
 - Design appropriate test

- List all relevant actions
 - **Ex**: Build, send troops

- Look-ahead Search
 - Start with initial state
 - Try all actions (look-ahead)
 - Stop if reached goal
 - Continue if not at goal

Tree Search
Planning Issues

- **Exponential** choices
 - Search action *sequences*
 - How far are we searching?
 - Cannot do this in real life!

- Game state is **complex**
 - Do we look at entire state?
 - Faster to “do” than to plan

- Must **limit** search
 - Reduce actions examined
 - Simplify game state
Internal State Representation

Simplified World Model

- Includes primary resources
 - **Example**: ammo, health
- Rough notion of position
 - **Example**: in/outside room
 - Both characters and items
- Game mechanic details
 - **Example**: respawn rate
 - Allows tactical decisions

Uses of Internal State

- Notice changes
 - Health is dropping
 - Enemy must be nearby
- Remember recent events
 - Enemy has left the room
 - Chase after fleeing enemy
- Remember older events
 - Picked up health 30 sec ago
Internal State Representation

Simplified World Model

- Includes primary resources
 - Example: ammo, health
- Rough notion of position
 - Example: in/outside room
- Both characters and items
- Game mechanic details
 - Example: respawn rate
- Allows tactical decisions

Uses of Internal State

- Notice changes
 - Health is dropping
 - Enemy has left the room
- Remember recent events
 - Enemy has left the room
 - Chase after fleeing enemy
- Remember older events
 - Picked up health 30 sec ago

Similar to Non-Digital Prototype
Internal State and Memory

- Each NPC has own state
 - Represents NPC memory
 - Might not be consistent

- Useful for character AI
 - Models sensory data
 - Models communication

- Isolates planning
 - Each NPC plans separately
 - Coordinate planning with a strategic manager
Strategy versus Tactics

Slide courtesy of Dave Mark
Internal State for Quake II

- Self
 - Current-health
 - Last-health
 - Current-weapon
 - Ammo-left
 - Current-room
 - Last-room
 - Current-armor
 - Last-armor
 - Available-weapons

- Enemy
 - Current-weapon
 - Current-room
 - Last-seen-time
 - Estimated-health
 - Current-time

- Random-number

- Powerup
 - Type
 - Room
 - Available
 - Estimated-spawn-time

- Map
 - Rooms
 - Halls
 - Paths

- Parameters
 - Full-health
 - Health-powerup-amount
 - Ammo-powerup-amount
 - Respawn-rate
Internal Action Representation

Simplified Action Model

- Internal Actions = *operators*
 - Just mathematical functions
 - Operators alter internal state

- Pre-conditions
 - What is required for action
 - Often resource requirement

- Effects
 - How action changes state
 - Both global and for NPC

Designing Actions

- Extrapolate from gameplay
- Start with an internal state
- Pick “canonical” game state
- Apply game action to state
- Back to internal state

- Remove any uncertainty
 - Deterministic NPC behavior
 - “Average” random results
 - Or pick worse case scenario
Internal Action Representation

Simplified Action Model

- Internal Actions = operators
 - Just mathematical functions
 - Operators alter internal state

- Pre-conditions
 - What is required for action
 - Often resource requirement

- Effects
 - How action changes state
 - Both global and for NPC

Designing Actions

- Extrapolate from gameplay
- Start with an internal state
- Pick “canonical” game state
- Apply game action to state
- Back to internal state
- Remove any uncertainty
- Deterministic NPC behavior
- “Average” random results
- Or pick worse case scenario

Like Gameplay Specification, but actions, interactions combined
Example: Pick-Up Health Op

Preconditions:
- Self.current-room = Powerup.current-room
- Self.current-health < full-health
- Powerup.type = health
- Powerup.available = yes

Effects:
- Self.last-health = self.current-health
- Self.current-health = current-health + health-powerup-amount
- Powerup.available = no
- Powerup.estimated-spawn-time = current-time + respawn-rate
Building Internal Models

- Planning is only as accurate as model
- Bad models \rightarrow bad plans
- But complex models \rightarrow slow planning

- Look at your nondigital prototype!
 - Heavily simplified for playability
 - Resources determine internal state
 - Nondigital verbs are internal actions

- One of many reasons for this exercise
What Should We Do?

Slide courtesy of John Laird

- **Pickup?**
 - Self.current-health = 20
 - Self.current-weapon = blaster

- **Shoot?**
 - Enemy.estimated-health = 50

- **Pickup?**
 - Powerup.type = health-pak
 - Powerup.available = yes
 - Powerup.type = Railgun
 - Powerup.available = yes
One Step: Pick-up Railgun

Slide courtesy of John Laird

- Self.current-health = 10
- Self.current-weapon = railgun
- Enemy.estimated-health = 50
- Powerup.type = health-pak
- Powerup.available = yes
- Powerup.type = Railgun
- Powerup.available = no
One Step: Shoot Enemy

Slide courtesy of John Laird

- **Self.current-health = 10**
- **Self.current-weapon = blaster**
- **Enemy.estimated-health = 40**
- **Powerup.type = health-pak**
- **Powerup.available = yes**
- **Powerup.type = Railgun**
- **Powerup.available = yes**
One Step: Pick-up Health-Pak

Slide courtesy of John Laird

Self.current-health = 90
Self.current-weapon = blaster

Enemy.estimated-health = 50

Powerup.type = health-pak
Powerup.available = no

Powerup.type = Railgun
Powerup.available = yes
State Evaluation Function

- Need to compare states
 - Is either state better?
 - How far away is goal?

- Might be partial order
 - Some states incomparable
 - If not goal, just continue

- Purpose of planning
 - Find good states
 - Avoid bad states
State Evaluation: Quake II

• **Example 1**: Prefer higher self.current-health
 • Always pick up health powerup
 • **Counter example**:
 • Self.current-health = 99%
 • Enemy.current-health = 1%

• **Example 2**: Prefer lower enemy.current-health
 • Always shoot enemy
 • **Counter example**:
 • Self.current-health = 1%
 • Enemy.current-health = 99%
State Evaluation: Quake II

• **Example 3:** Prefer `higher self.health` – `enemy.health`
 • Shoot enemy if I have health to spare
 • Otherwise pick up a health pack
 • Counter examples?

• **Examples of more complex evaluations**
 • If `self.health > 50%` prefer `lower enemy.health`
 • Otherwise, want `higher self.health`
 • If `self.health > low-health` prefer `lower enemy.health`
 • Otherwise, want `higher self.health`
Two Step Look-Ahead

Slide courtesy of John Laird

Self.current-health = 80
Self.current-weapon = blaster

Enemy.estimated-health = 40

Powerup.type = health-pak
Powerup.available = no

Powerup.type = Railgun
Powerup.available = yes

Pickup
Shoot
Three Step Look-Ahead

Slide courtesy of John Laird

Self.current-health = 100
Enemy.estimated-health = 0
Self.current-weapon = railgun

Powerup.type = health-pak
Powerup.available = no

Powerup.type = Railgun

Powerup.available = no
One-Step Lookahead

```c
op pickBest(state) {
    foreach op satisfying precond {
        newstate = op(state)
        evaluate newstate
    }
    return op with best evaluation
}
```

Multistep Tree Search

```c
[op] bestPath(&state, depth) {
    if depth == 0 { return [] }
    foreach op satisfying precond {
        newstate = op(state)
        [nop]=bestPath(newstate, depth-1)
        evaluate newstate
    }
    pick op+[nop] with best state
    modify state to reflect op+[nop]
    return op+[nop]
}
```
Look-Ahead Search

• Are more steps better?
 • Longer, more elaborate plans
 • More time & space consuming
 • Opponent or environment can mess up plan
 • Simplicity of internal model causes problems

• In this class, limit three or four steps
 • Anything more, and AI is too complicated

• Purpose is to be challenging, not to win
Recall: LibGDX Behavior Trees

- **Selector** rules
 - Tests each subtask for success
 - Tasks are tried independently
 - Chooses first one to succeed

- **Sequence** rules
 - Tests each subtask for success
 - Tasks are tried in order
 - Does all if succeeds; else none

- **Parallel** rules
 - Tests each subtask for success
 - Tasks are tried simultaneously
 - Does all if succeeds; else none
Recall: LibGDX Behavior Trees

- **Selector rules**
 - Tests each subtask for success
 - Tasks are tried independently
 - Chooses first one to succeed

- **Sequence rules**
 - Tests each subtask for success
 - Tasks are tried in order
 - Does all if succeeds; else none

- **Parallel rules**
 - Tests each subtask for success
 - Tasks are tried simultaneously
 - Does all if succeeds; else none

Lookahead search, but only checks if plan is *acceptable*.
Opponent: New Problems

Slide courtesy of John Laird

Self.current-health = 20
Self.current-weapon = blaster

Enemy.estimated-health = 50

Powerup.type = health-pak
Powerup.available = yes

Powerup.type = Railgun
Powerup.available = yes
Opponent Model

- **Solution 1**: Assume the worst
 - Opponent does what would be worst for you
 - Full game tree search; exponential

- **Solution 2**: What would I do?
 - Opponent does what you would in same situation

- **Solution 3**: Internal opponent model
 - Remember what did last time
 - Or remember what they like to do
Opponent Interference

- Opponent actions may prevent yours
 - **Example**: Opponent grabs railgun first
 - Need to take into account in your plan

- **Solution**: Iteration
 - Plan once with no interference
 - Run again, assuming best plans of the opponent
 - Keep iterating until happy (or run out of time)

- Planning is very expensive!
Asynchronous AI

- Game Thread
 - Update
 - Draw
- Second Thread
 - AI Manager
 - Check for request
 - Compute answer
 - Store in buffer

- Request Plan
- Check
- Buffer
- Answer
Alternative: Iterative AI

Game Thread

- Update
- Draw

AI Manager

- Initialize
- Update
- Result
Alternative: Iterative AI

Game Thread

Update

Draw

AI Manager

Initialize

Update

Result

Looks like asset management
Using Asynchronous AI

- Give AI a **time budget**
 - If planning takes too long, abort it
 - Use counter in update loop to track time

- **Beware of stale plans**
 - Actual game state has probably changed
 - When find a plan, make sure it is still good
 - Evaluate (quickly) with new internal state
 - Make sure result is “close” to what thought
Planning: Optimization

• **Backwards Planning**

 • **Idea**: few operators achieve goal conditions

 • **Implementation**:

 • For each operator, reverse the effect

 • Check reversed effect satisfies pre-conditions

 • Possible to use backwards and forwards

 • Start on each end, and check for meets

 • Does not work well with numerical resources
To Plan or Not to Plan

• **Advantages**
 - Less predictable behavior
 - Can handle unexpected situations
 - More accurate than rule-based AI

• **Disadvantages**
 - Less predictable behavior (harder to debug)
 - Planning takes a lot of processor time
 - Planning takes memory
 - Need simple but accurate internal representations
Other Possibilities

- There are many more options available
 - Neural nets
 - Decision trees
 - General machine learning
 - Take **CS 4700** if want to learn more
- Quality is a matter of heated debate
 - Better to spend time on internal state design
 - Most AI is focused on perception modeling
Summary

- Rule-based AI is simplest form of strategic AI
 - Only limited to one-step at a time
 - Can easily make decisions that lose in long term

- More complicated behavior requires **planning**
 - Simplify the game to turn-based format
 - Use classic AI search techniques

- Planning has advantages and disadvantages
 - Remember, the desire is to **challenge**, not to **win**