the gamedesigninitiative at cornell university

Lecture 17

Physics in Games

The Pedagogical Problem

- Physics simulation is a **very** complex topic
 - No way I can address this in a few lectures
 - Could spend an entire course talking about it
 - CS 5643: Physically Based Animation
- This is why we have **physics engines**
 - Libraries that handle most of the dirty work
 - But you have to understand how they work
 - **Examples**: Box2D, Bullet, PhysX

Approaching the Problem

- Want to start with the **problem description**
 - Squirrel Eiserloh's Problem Overview slides
 - <u>http://www.essentialmath.com/tutorial.htm</u>
- Will help you understand the Engine APIs
 - Understand the limitations of physics engines
 - Learn where to go for other solutions
- Will cover box2d API next time in depth

Physics in Games

- Moving objects about the screen
 - **Kinematics**: Motion ignoring external forces (Only consider position, velocity, acceleration)
 - **Dynamics**: The effect of forces on the screen
- **Collisions** between objects
 - **Collision Detection**: Did a collision occur?
 - **Collision Resolution**: What do we do?

Motion: Modeling Objects

- Typically ignore geometry
 - Don't worry about shape
 - Only needed for *collisions*
- Every object is a point
 - *Centroid*: average of points
 - Also called: *center of mass*
 - Same if density uniform
- Use rigid body if needed
 - Multiple points together
 - Moving one moves them all

Motion: Modeling Objects

- Typically ignore geometry
 - Don't worry about shape
 - Only needed for *collisions*
- Every object is a point
 - *Centroid*: average of points
 - Also called: *center of mass*
 - Same if density uniform
- Use rigid body if needed
 - Multiple points together
 - Moving one moves them all

Motion: Modeling Objects

- Typically ignore **geometry**
 - Don't worry about shape
 - Only needed for *collisions*
- Every object is a point
 - *Centroid*: average of points
 - Also called: *center of mass*
 - Same if density uniform
- Use rigid body if needed
 - Multiple points together
 - Moving one moves them all

- Physics is time-stepped
 - Assume velocity is constant (or the acceleration is)
 - Compute the position
 - Move for next frame
- Movement is very linear
 - Piecewise approximations
 - Remember your calculus
- Smooth = smaller steps
 - More frames a second?

- Physics is time-stepped
 - Assume velocity is constant (or the acceleration is)
 - Compute the position
 - Move for next frame
- Movement is very linear
 - Piecewise approximations
 - Remember your calculus
- Smooth = smaller steps
 - More frames a second?

- Physics is time-stepped
 - Assume velocity is constant (or the acceleration is)
 - Compute the position
 - Move for next frame
- Movement is very linear
 - Piecewise approximations
 - Remember your calculus
- Smooth = smaller steps
 - More frames a second?

- Physics is time-stepped
 - Assume velocity is constant (or the acceleration is)
 - Compute the position
 - Move for next frame
- Movement is very linear
 - Piecewise approximations
 - Remember your calculus
- Smooth = smaller steps
 - More frames a second?

- Physics is time-stepped
 - Assume velocity is constant (or the acceleration is)
 - Compute the position
 - Move for next frame
- Movement is very linear
 - Piecewise approximations
 - Remember your calculus
- Smooth = smaller steps
 - More frames a second?

- Physics is time-stepped
 - Assume velocity is constant (or the acceleration is)
 - Compute the position
 - Move for next frame
- Movement is very linear
 - Piecewise approximations
 - Remember your calculus
- Smooth = smaller steps
 - More frames a second?

Kinematics

- **Goal**: determine an object position *p* at time *t*
 - Typically know it from a previous time
- Assume: constant velocity v

•
$$p(t+\Delta t) = p(t) + v\Delta t$$

• Or
$$\Delta p = p(t + \Delta t) - p(t) = v \Delta t$$

- Alternatively: constant acceleration *a*
 - $v(t+\Delta t) = v(t) + a\Delta t$ (or $\Delta v = a\Delta t$)

•
$$p(t+\Delta t) = p(t) + v(t)\Delta t + \frac{1}{2}a(\Delta t)^2$$

• Or $\Delta p = v_0 \Delta t + \frac{1}{2}a(\Delta t)^2$

Formulas

commonly

in use

Kinematics

• **Goal**: determine an object position *p* at time *t*

• Typically know it from a previous time

Linear Dynamics

- Forces affect movement
 - Springs, joints, connections
 - Gravity, repulsion
- Get velocity from forces
 - Compute current force *F*
 - F constant entire frame
 - Formulas:

 $\Delta a = F/m$ $\Delta v = F\Delta t/m$ $\Delta p = F(\Delta t)^2/m$

Linear Dynamics

- **Force**: *F*(*p*,*t*)
 - *p*: current position
 - *t*: current time
- Creates a **vector field**
 - Movement should follow field direction
- Update formulas
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$

11	1	1	1	t	t	t	t	t	1	1	1	1	1
11	1	1	1	t	t	t	t	t	1	1	1	1	1
11	1	1	1	t	ŧ	t	t	t	1	1	1	1	1
11	1	1	1	1	ŧ	ŧ	t	1	1	1	1	1	/
11	,	1	1	4	٠	٠	4		1	1	1	-	~
~ ~	,	1	•	4	٠	٠	4	4	4	1	1	/	~*
_+ _+	+	-	+			٠			+	-	+	_+	-+
-++	+	۰	۰	۰			۰	۰	۰	۰	+	+	-+
-+ -+	+	•	•	٠	۲	۳	٠	•	•	ы	+	-+-	-+
~~	*		4	٦	۲	۲	٦	٦	٩	×	*	1	~
	*	•	١	۱	+	t	۱	٩	١			*	1
11	1	۲	١	١	ŧ	ŧ	١	٩	٩	*	1	1	~
11	1	١	٩	ł	ŧ	ŧ	¥	Ļ	١	1	1	1	1
11	1	١	¥	ł	ŧ	ŧ	ł	¥	¥	1	1	1	1
11	1	1	ų	ţ	Ŧ	ł	ţ	ţ	ł	1	1	1	1

Linear Dynamics

- **Force**: *F*(*p*,*t*)
 - *p*: current position
 - *t*: current time
- Creates a **vector field**
 - Movement should follow field direction
- Update formulas
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

gamedesigninitiative

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

- Differential Equation
 - F(p,t) = m a(t)
 - $F(p,t) = m \underline{p}''(t)$
- Euler's method:
 - $a_i = F(p_i, i\Delta t)/m$
 - $v_{i+1} = v_i + a_i \Delta t$
 - $p_{i+1} = p_i + v_i \Delta t$
- But heavily optimized

Problem with DE Solvers

Errors accumulate

- Side effect of techniques
- Stepwise approximations
- Major problem with *orbits*
 - Move along tangent vector
 - Vector takes out of orbit
 - Gets worse over time
- Must *constrain* behavior
 - Keep movement in orbit

Dealing with Error Creep

- Classic solution: reduce the time step Δt
 - Up the frame rate (not necessarily good)
 - Perform more than one step per frame
 - Each Euler step is called an *iteration*
- Multiple iterations per frame
 - Let *h* be the length of the frame
 - Let *n* be the number of iterations

 $\Delta t = h/n$

• Typically a parameter in your physics engine

Dealing with Error Creep

- Classic solution: reduce the time step Δt
 - Up the frame rate (not necessarily good)
 - Perform more than one step per frame
 - Each Euler sta
- Still does not solve orbit problem • Mu
 - Let une length of the frame

- $\Delta t = h/n$
- Let *n* be the number of iterations
- Typically a parameter in your physics engine

Problem with DE Solvers

- Errors accumulate
 - Side effect of techniques
 - Stepwise approximations
- Major problem with *orbits*
 - Move along tangent vector
 - Vector takes out of orbit
 - Gets worse over time
- Must constrain behavior
 - Keep movement in orbit

Constraint Solvers

- Limit object movement
 - Pos must satisfy constraint
 - Correct position if does not
- **Example:** Distance
 - Hard: Dist must be exact
 - Soft: Dist must be no more
- Other constraints
 - Contact: non-penetration
 - Restitution: bouncing
 - Friction: sliding, sticking

Constraint Solvers

Challenge: Interconnected Constraints

- Not hard if **one** object
 - Just move it and correct
- How about *relationships*?
 - Correct an object
 - But it constrained another
 - So have to correct it and...
- When does this happen?
 - Ropes, chains
 - Box stacking

Challenge: Interconnected Constraints

- Not hard if **one** object
 - Just move it and correct
- How about *relationships*?
 - Correct an object
 - But it constrained another
 - So have to correct it and...
- When does this happen?
 - Ropes, chains
 - Box stacking

Challenge: Interconnected Constraints

- Not hard if **one** object
 - Just move it and correct
- How about *relationships*?
 - Correct an object
 - But it constrained another
 - So have to correct it and...
- When does this happen?
 - Ropes, chains
 - Box stacking

box2d is good, but not perfect

Joints Fall Apart!

Error Accumulation: Energy

- Want energy conserved
 - Energy loss undesirable
 - Energy gain is evil
 - Simulations explode!
- Not always possible
 - Error accumulation!
- Need *ad hoc* solutions
 - Clamping (max values)
 - Manual dampening

Error Accumulation: Energy

- Want energy conserved
 - Energy loss undesirable
 - Energy gain is **evil**
 - Simulations explode! High Energy is where joints fail
- Need *ad hoc* solutions
 - Clamping (max values)
 - Manual dampening

Kinematics vs. Dynamics

Kinematics

• Advantages

- Very simple to use
- Non-calculus physics
- Disadvantages
 - Only simple physics
 - All bodies are rigid
- Old school games

Dynamics

- Advantages
 - Complex physics
 - Non-rigid bodies
- Disadvantages
 - Beyond scope of course
 - Need a physics engine
- Neo-retro games

Physics in Games

- **Moving** objects about the screen
 - **Kinematics**: Motion ignoring external forces (Only consider position, velocity, acceleration)
 - **Dynamics**: The effect of forces on the screen
- **Collisions** between objects
 - **Collision Detection**: Did a collision occur?
 - **Collision Resolution**: What do we do?

Collisions and Geometry

- Collisions need geometry
 - Points are not enough
 - Find *where* objects meet
- Often use **convex** shapes
 - Lines always remain inside
 - If not convex, is *concave*
- What if is not convex?
 - Break into components
 - Triangles always convex!

Collisions and Geometry

- Collisions need geometry
 - Points are not enough
 - Find *where* objects meet
- Often use **convex** shapes
 - Lines always remain inside
 - If not convex, is *concave*
- What if is not convex?
 - Break into components
 - Triangles always convex!

Recall: Triangles in Computer Graphics

- Everything made of **triangles**
 - Mathematically "nice"
 - Hardware support (GPUs)
- Specify with three vertices
 - Coordinates of corners
- Composite for complex shapes
 - Array of vertex objects
 - Each 3 vertices = triangle

Recall: Triangles in Computer Graphics

- Everything made of **triangles**
 - Guaranteed to be convex
 - Hardware support (GPUs)
- Specify with three vertices
 - Coordinates of corners
- Composite for complex shapes
 - Array of vertex objects
 - Each 3 vertices = triangle

Collisions and Geometry

- Collisions need geometry
 - Points are not enough
 - Find *where* objects meet
- Often use **convex** shapes
 - Lines always remain inside
 - If not convex, is *concave*
- What if is not convex?
 - Break into components
 - Triangles always convex!

Collision Types

Inelastic Collisions

- No energy preserved
- Stop in place (v = 0)
- "Back-out" so no overlap
- Very easy to implement

• Elastic Collisions

- 100% energy preserved
- Think billiard balls
- Classic physics problem

Something In-Between?

• Partially Elastic

- x% energy preserved
- Different each object
- Like elastic, but harder
- Issue: object "material"
 - What is object made of?
 - **Example**: Rubber? Steel?
- Another parameter!
 - Technical prototype?

Collision Resolution: Circles

- Single point of contact!
 - Energy transferred at point
 - Not true in complex shapes
- Use relative coordinates
 - Point of contact is origin
 - **Perpendicular component**: Line through origin, center
 - **Parallel component**: Axis of collision "surface"
- Reverse object motion on the perpendicular comp

Collision Resolution: Circles

- Single point of contact!
 - Energy transferred at point
 - Not true in complex shapes
- Use relative coordinates
 - Point of contact is origin
 - **Perpendicular component**: Line through origin, center
 - **Parallel component**: Axis of collision "surface"
- Exchange energy on the perpendicular comp

Issues with Collisions: Tunneling

- Games act like flip-books
 - Sequence of snapshots
 - Collisions mid-snapshot?
 - Could *miss* the collision
- Example of **false negative**
- This is a **serious** problem
 - Players going where shouldn't
 - Players missing event trigger
 - Cannot ignore tunneling

Tunneling

Tunneling: Observations

• Small objects tunnel more easily

Tunneling: Observations

- Small objects tunnel more easily
- Fast-moving objects tunnel more easily

More Complex Shapes

- Point of contact harder
 - Could just be a point
 - Or it could be an edge
- Model w/ rigid bodies
 - Break object into points
 - Connect with constraints
 - Force at point of contact
 - Transfers to other points
- Needs constraint solver

Summary

- Object representation depends on goals
 - For motion, represent object as a single point
 - For collision, objects must have geometry
- Dynamics is use of forces to move objects
 - Solve differential equations for position
 - Need **constraint solvers** to overcome error creep
- Collisions are broken up into two steps
 - Collision detection checks for intersections
 - **Collision resolution** is hard if not a circle

