Lecture 11

Architecture Design
Take Away for Today

- What should the lead programmer do?
- How do CRC cards aid software design?
 - What goes on each card?
 - How do you lay them out?
 - What properties should they have?
- How do activity diagrams aid design?
 - How do they relate to CRC cards?
- Difference between design & documentation
Role of Lead Programmer

- Make high-level architecture decisions
 - How are you splitting up the classes?
 - What is your computation model?
 - What is stored in the data files?
 - What third party libraries are you using?

- Divide the work among the programmers
 - Who works on what parts of the game?
 - What do they need to coordinate?
Architecture Design

Architecture: The Big Picture

Game Engine
- Input Devices
- Discrete Simulation Engine
- Compiler
- Data Management Layer
- Character Scripts
- Character Data
- UI Elements
- Models and Textures
- Sounds

Player
- GUI
- Rendering Engine
- Audio Engine

Programmer
- Physics Engine
- AI Engine (e.g. Pathfinding)

Designer or Modder

The game design initiative at Cornell University
Identify Modules (Subsystems)

• **Modules**: logical unit of functionality
 • Often reusable over multiple games
 • Implementation details are hidden
 • API describes interaction with rest of system

• Natural way to break down work
 • Each *programmer* decides implementation
 • But entire *team* must agree on the API
 • **Specification first, then programming**
Architecture: The Big Picture

Architecture Design
Example: Physics Engines

- API to manipulate objects
 - Put physics objects in “container”
 - Specify their connections (e.g. joints)
 - Specify forces, velocity
- Everything else hidden from user
 - Collisions detected by module
 - Movement corrected by module
• Shows when one module “depends” on another
 • Module A calls a method/function of Module B
 • Module A creates/loads instance of Module B

• **General Rule**: Does A need the API of B?
 • How would we know this?

Module 1 does not “need” to know about Module 3
Relationship Graph

- Edges in relationship graph are often **directed**
 - If A calls a method of B, is B aware of it?

- But often undirected in architecture diagrams
 - Direction clear from other clues (e.g. layering)
 - Developers of both modules should still agree on API

Does Module 1 need to know about Module 2?
Dividing up Responsibilities

- Each programmer has a module
 - Programmer owns the module
 - Final word on implementation

- Owners collaborate w/ neighbors
 - Agree on API at graph edges
 - Call meetings “Interface Parties”

- Works, but…

must agree on modules and responsibilities ahead of time
Nested (Sub)modules

- Can do this **recursively**
 - Module is a piece of software
 - Can break into more modules

- Nested APIs are **internal**
 - Only needed by module owner
 - Parent APIs may be different!

- Critical for very **large groups**
 - Each small team gets a modules
 - Inside the team, break up further
 - Even deeper hierarchies possible
Architecture: The Big Picture

Architecture Design
How Do We Get Started?

- Remember the design caveat:
 - Must agree on module responsibilities first
 - Otherwise, code is duplicated or even missing

- Requires a high-level architecture plan
 - Enumeration of all the modules
 - What their responsibilities are
 - Their relationships with each other

- Responsibility of the lead architect
Design: CRC Cards

• **Class-Responsibility-Collaboration**
 • **Class**: Important class in subsystem
 • **Responsibility**: What that class does
 • **Collaboration**: Other classes required
 • May be part of another subsystem

• **English description of your API**
 • Responsibilities become **methods**
 • Collaboration identifies **dependencies**
CRC Card Examples

AI Controller

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathfinding: Avoiding obstacles</td>
<td>Game Object, Scene Model</td>
</tr>
<tr>
<td>Strategic AI: Planning future moves</td>
<td>Player Model, Action Model</td>
</tr>
<tr>
<td>Character AI: Driving NPC personality</td>
<td>Game Object, Level Editor Script</td>
</tr>
</tbody>
</table>

Scene Model

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enumerates game objects in scene</td>
<td>Game Object</td>
</tr>
<tr>
<td>Adds/removes game objects to scene</td>
<td>Game Object</td>
</tr>
<tr>
<td>Selects object at mouse location</td>
<td>Mouse Event, Game Object</td>
</tr>
</tbody>
</table>
CRC Card Examples

Controller vs. AI Controller

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathfinding: Avoiding obstacles</td>
<td>Game Object, Scene Model</td>
</tr>
<tr>
<td>Strategic AI: Planning future moves</td>
<td>Player Model, Action Model</td>
</tr>
<tr>
<td>Character AI: Driving NPC personality</td>
<td>Game Object, Level Editor Script</td>
</tr>
</tbody>
</table>

Model vs. Scene Model

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enumerates game objects in scene</td>
<td>Game Object</td>
</tr>
<tr>
<td>Adds/removes game objects to scene</td>
<td>Game Object</td>
</tr>
<tr>
<td>Selects object at mouse location</td>
<td>Mouse Event, Game Object</td>
</tr>
</tbody>
</table>
Creating Your Cards

• Start with MVC Pattern
 • Gives 3 basic subsystems
 • List responsibilities of each
 • May be all that you need (TemperatureConverter)

• Split up a module if
 • Too much for one person
 • API for module too long

• Don’t need to nest (yet)
 • Perils of ravioli code

<table>
<thead>
<tr>
<th>Module</th>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Architecture Design
Creating Your Cards

- Start with MVC Pattern
 - Gives 3 basic subsystems
 - List responsibilities of each
 - May be all that you need (TemperatureConverter)

- Split up a module if
 - Too much for one person
 - API for module too long

- Don’t need to nest *(yet)*
 - Perils of *ravioli code*

<table>
<thead>
<tr>
<th>Module 1</th>
<th>Module 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Collaboration</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Application Structure

Ownership

Collaboration

Architecture Design
Application Structure

Ownership
- Must import class/interface
- Instantiates an object **OR**
- Calls the objects methods

Ownership
- Instantiated the object
- Subset of collaboration

Collaboration
- Instantiates an object **OR**
- Calls the objects methods

Architecture Design
Following the Information Flow

Root Controller

Subcontroller

Subcontroller

Model

Model

Model

Pushes data via parameters
Following the Information Flow

Root Controller

Subcontroller

Subcontroller

Model

Model

Model

Pushes data via parameters

Pulls data via return
Following the Information Flow

Information flow is how we evaluate your architecture spec

- **Pushes data via parameters**
- **Pulls data via return**
Avoid Cyclic Collaboration

Controller

collaborates with

Y

Z

collaborates with

Y

X

Y

X

collaborates with

collaborates with
Avoid Cyclic Collaboration

- **Example**: Lab 3
 - Ship fires projectiles
 - Must add to game state

- Originally all in model
 - Ship referenced game state
 - And game state stored ship
 - **Cyclic Reference**

- We added a new controller
 - It references game state
 - Only it adds to game state
 - **Cycle broken**
Avoid Cyclic Collaboration

- **Example**: Lab 3
 - Ship fires projectiles
 - Must add to game state

- Originally all in model
 - Ship referenced game state
 - And game state stored ship
 - *Cyclic Reference*

- We added a new controller
 - It references game state
 - Only it adds to game state
 - *Cycle broken*
Alternative: Interfaces

- Relationships are for APIs
 - Implementation not relevant
 - Can be class or interface
- Interfaces can break cycles
 - Start with single class
 - Break into many interfaces
 - Refer to interface, not class
- Needed if actions in model
 - Abstracts game state
 - Hides all but relevant data
Architecture: The Big Picture

Game Design Initiative at Cornell University

Simple (Planar) Graph

Architecture Design
CRC Index Card Exercise

Class 1
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Class 2</td>
</tr>
<tr>
<td>...</td>
<td>Class 3</td>
</tr>
<tr>
<td>...</td>
<td>Class 4</td>
</tr>
</tbody>
</table>

Try to make collaborators adjacent

Class 2
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

If cannot do this, time to think about nesting!

Class 3
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Class 4
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Designing Class APIs

- Make classes formal
- Turn responsibilities into methods
- Turn collaboration into parameters

Scene Model

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enumerates game objects</td>
<td><code>Iterator<GameObject> enumObjects()</code></td>
</tr>
<tr>
<td>Adds game objects to scene</td>
<td><code>void addObject(GameObject)</code></td>
</tr>
<tr>
<td>Removes objects from scene</td>
<td><code>void removeObject(GameObject)</code></td>
</tr>
<tr>
<td>Selects object at mouse</td>
<td><code>GameObjectgetObject(MouseEvent)</code></td>
</tr>
</tbody>
</table>
Documenting APIs

- Use a formal **documentation style**
 - What **parameters** the method takes
 - What values the method **returns**
 - What the method does (**side effects**)
 - How method responds to errors (**exceptions**)

- Make use of **documentation comments**
 - **Example**: JavaDoc in Java
 - Has become defacto-standard (even used in C++)
/**
 * Returns an Image object that can then be painted on the screen.
 * <p>
 * The url argument must specify an absolute [@link URL]. The name argument is a specifier that
 * is relative to the url argument.
 * <p>
 * This method always returns immediately, whether or not the image exists. When this applet
 * attempts to draw the image on the screen, the data will be loaded. The graphics primitives that
 * draw the image will incrementally paint on the screen.
 *<p>
 * @param url an absolute URL giving the base location of the image
 * @param name the location of image, relative to the url argument
 * @return the image at the specified URL
 * @see Image
 */

public Image getImage(URL url, String name) {
 try {
 return getImage(new URL(url, name));
 } catch (MalformedURLException e) { return null; } }

Architecture Design

Taking This Idea Further

- **UML**: Unified Modeling Language
 - Often used to specify class relationships
 - But expanded to model other things
 - **Examples**: data flow, human users

- How useful is it?
 - Extremely useful for documentation
 - Less useful for design (e.g. before implementation)
 - A language to program in another language
Activity Diagrams

- Define the **workflow** of your program
 - Very similar to a standard flowchart
 - Can follow simultaneous paths (threads)

- Are a *component* of **UML**
 - But did not originate with UML
 - Mostly derived from **Petri Nets**
 - One of most useful UML *design* tools

- Activity diagrams are only UML we use
Activity Diagram Example

Find Beverage

[found coffee]

Put Coffee in Filter
Put Filter in Machine
Turn On Machine

[coffee dispensed]

Pour Coffee
Drink Beverage

Add Water to Reservoir
Get Cups
Get Can of Cola

[found cola]

[no cola]

[no coffee]
Activity Diagram Example

Start

Find Beverage

Put Coffee in Filter

Put Filter in Machine

Turn On Machine

Add Water to Reservoir

Brew Coffee

Get Coffee in Filter

Get Cups

Get Can of Cola

Get Can of Cola

[no coffee]

[found coffee]

[found cola]

[no cola]

Decision

Guard

Sympathy

Bar

Synch

Condition

[cup dispensed]

[coffee dispensed]

Pour Coffee

Drink Beverage

End

Architecture Design
Activity Diagram Components

- **Synchronization Bars**
 - **In**: Wait until have happened
 - **Out**: Actions “simultaneous”
 - … or order does not matter

- **Decisions**
 - **In**: Only needs one input
 - **Out**: Only needs one output

- **Guards**
 - When we can follow edge
 - * is iteration over *container*
Asynchronous Pathfinding

- Get Input
 - [for each selected]
 - Measure to Goal
 - [for each object]
 - Determine Goal
 - [for each selected]
 - [new goal]
 - [path found]
 - [all objects checked]
 - [for each object]
 - Move Object
 - [for each object]
 - Draw
 - Move Object
 - [for each object]
 - Draw

- Find Path
- Reset Pathfinder
Asynchronous Pathfinding

Get Input

Iteration

* [for each selected]

Determine Goal

* [for each selected]

Measure to Goal

[all objects checked]

* [for each object]

Move Object

*[for each object]

Draw

Task Separator

[all objects checked]

* [for each object]

Reset Pathfinder

Buffer

Find Path

[new goal]

[all objects checked]

[for each object]

[for each object]

Measure to Goal

* [for each selected]

Determine Goal

[all objects checked]

[for each object]

Move Object

*[for each object]

Draw

Task Separator

[all objects checked]

[for each object]

Reset Pathfinder

Buffer

Find Path

[new goal]

[all objects checked]

[for each object]

Move Object

*[for each object]

Draw

Task Separator
Asynchronous Pathfinding

Synchronization + Guard
Think of as multiple outgoing edges (with guard) from bar

- Get Input
- Reset Pathfinder
- **Iteration**
 - *[for each selected]*
 - *[for each object]*
- Measure to Goal
- **[new goal]**
- Measure to Goal
- **[path found]**
- **[all objects checked]**
 - *[for each object]*
- Move Object
- Draw

Task Separator
Expanding Level of Detail
Using Activity Diagrams

• Good way to identify major subsystems
 • Each action is a responsibility
 • Need extra responsibility; create it in CRC
 • Responsibility not there; remove from CRC

• Do activity diagram first?
 • Another iterative process
 • Keep level of detail simple
 • Want outline, not software program

Architecture Design
Identify major subsystems in **CRC cards**
- List responsibilities
- List collaborating subsystems

Draw **activity diagram**
- Make sure agrees with CRC cards
- Revise CRC cards if not

Create **class API** from CRC cards
- Recall intro CS courses: *specifications first*!
- But not actually part of specification document
Programming Contract

• Once create API, it is a **contract**
 - Promise to team that “works this way”
 - Can change **implementation**, but not **interface**

• If change the interface, must **refactor**
 - Restructure architecture to support interface
 - May change the CRCs and activity diagram
 - Need to change any written code
Summary

- Architecture design starts at a high level
 - **Class-responsibilities-collaboration**
 - Layout as cards to visualize dependencies

- **Activity diagrams** useful for update loop
 - Outline general flow of activity
 - Identifies *dependencies* in the process

- Must formalize **class APIs**
 - No different from standard Java documentation
 - Creates a *contract* for team members
Where to From Here?

- Later lectures fill in architecture details
 - **Data-Driven Design**: Data Management
 - **Memory**: RAM, Texture Memory
 - **2D Graphics**: Drawing
 - **Physics Engines**: Collisions, Forces
 - **Character AI**: Sense-Think-Act cycle
 - **Strategic AI**: Asynchronous AI

- But there is more design coming too