
gamedesigninitiative
at cornell university

the

Game
Loop

2110-Level Apps are Event Driven

Application

JFrame

@105dc

Listener

method(Event)

Listener

Registers itself
as a listener

Generates event e and then
calls method(e) on listener

Limitations of the Event Model

� Program only reacts to user input
� Nothing changes if user does nothing
� Desired behavior for productivity apps

� Games continue without input
� Character animation
� Clock timers
� Enemy AI
� Physics Simulations

The Game Loop

Update

Draw

The Game Loop

Update

Draw

Cull non-visible objects
Transform visible objects

Display backing buffer
Draw to backing buffer

Cull non-visible objects
Transform visible objects
Draw to backing buffer

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

Cull non-visible objects
Transform visible objects
Draw to backing buffer

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms

Few Words on Drawing

� Drawing needs to be fast!
� Do as little computation as possible
� But draw as few objects as possible

� Is this a contradiction?
� Need to compute what to draw
� So drawing less has extra overhead

� Rule: do not modify game state in draw
� Any extra computation is local-only

Cull non-visible objects
Transform visible objects
Draw to backing buffer

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

Player Input

� Traditional input is event-driven
� Events capture state of controller
� OS/VM generates events for you
� Listeners react to events

� Game loop uses polling for input
� Ask for controller state at start of loop
� Example: What is joystick position?
� If no change, do no actions that loop

Problem with Polling

� Only one event per update loop
� Multiple events are lost
� Example: Fast typing

� Captures state at beginning
� Short events are lost
� Example: Fast clicks

� Event-driven mostly avoids these problems
� Captures all events as they happen
� But capture still has a frame-rate resolution

Combining Input Approaches

� LibGDX input is extremely flexible
� Every input type supports events OR polling

� Polling: Input interface
� Access it through the static class GDX.Input
� Allows you to read the input state right now

� Events: InputProcessor interface
� Register it with the appropriate input device
� Works exactly like Swing listeners

public class MyProcessor implements
InputProcessor {

public void keyTyped(char c) {
// Do something with input

}

}

Problem: Timing

Update

Draw

How do these
fit together?

public class MyProcessor implements
InputProcessor {

public void keyTyped(char c) {
// Do something with input

}

}

Problem: Timing

Update

Draw

How do these
fit together? Unclear

exactly when
it is invoked

Consumer

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e
Lo

op

Consumer

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e
Lo

op

Buffer

Consumer

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e
Lo

op

Buffer

Answer

Consumer

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e
Lo

op

Buffer

Answer

Check

Polling!

Consumer

Classic Producer-Consumer Problem

Producer

Update

Draw

Input Handler

G
am

e
Lo

op

Buffer

Answer

Check

Polling!

Overwriting?

Buffering Input

� If overwriting an issue, need an event queue
� Input processor writes at end of the queue
� Game loop reads from the front of queue

� Generally requires multiple threads
� Event handler is (usually) OS/VM provided thread
� Game loop itself is an additional thread

event1 event2 event3 •event5event4

Event handler
puts event here

Game loop
reads event here

Event Handlers: Really Necessary?

� Most of the time: No
� Frame rate is short: 16.7 ms
� Most events are > 16.7 ms
� Event loss not catastrophic

� Buffering is sometimes undesirable
� Remembers every action ever done
� But may take a longer time to process
� If takes too long, just want to abort

Polling

� When game loop is explicit
� Actively animating screen
� Must time input correctly

� Example: playing the game

Picking the Right Input

Event Driven

� When game loop is implicit
� Art assets are largely static
� Nothing to do if no input

� Example: a menu screen

Cull non-visible objects
Transform visible objects
Draw to backing buffer

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

Player Actions

� Actions alter the game state
� Can alter player state: movement
� Can alter opponent state: damage

� Player actions correspond to user input
� Choice is determined by input controller
� Else action is performed by computer

� These are your game verbs!

Abstract Actions from Input

� Actions: functions that modify game state
� move(dx,dy) modifies x, y by dx, dy
� attack(o) attacks opponent o

� Input controller maps input to actions
� Read input state from controller
� Pick an action and call that function

� Input handler should never alter state directly!

Abstract Actions from Input

� Actions: functions that modify game state
� move(dx,dy) modifies x, y by dx, dy
� attack(o) attacks opponent o

� Input controller maps input to actions
� Read input state from controller
� Pick an action and call that function

� Input handler should never alter state directly!

Design versus
Implementation

Cull non-visible objects
Transform visible objects
Draw to backing buffer

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

NPC: Non-Player Character

� NPC is an intelligent computer-controlled entity
� Unlike a physics object, it can act, not just interact
� Sometimes called an agent

� NPCs have their own actions/verbs
� But no input controller to choose

� Work on sense-think-act cycle
� Sense: perceive the world around it
� Think: choose an action to perform
� Act: update the game state

� Act should be very fast!
� Function to update state
� Example: apply velocity
� Exactly like the player

� Sense-think unique to NPC
� The hard computation
� Focus of AI lectures

� Multiplayer: Replace sense-
think with human decision

Act versus Sense-Think

Alert!

� Sensing may be slow!
� Consider all objects

� Example: morale
� n knights, n skeletons
� Knights fear skeletons
� Proportional to # seen

� Count skeletons in view
� O(n) to count skeletons
� O(n2) for all units

Problem with Sensing

Time per tick

3 units

2 units

1 unit

Processing NPCs

� Naïve solution: sequentially

� Problem: NPCs react too fast!
� Each reads the actions of previous
� Even before drawn on screen!

Player

NPC 1

Draw

NPC 2

NPC 3

Processing NPCs

� Naïve solution: sequentially

� Problem: NPCs react too fast!
� Each reads the actions of previous
� Even before drawn on screen!

� Idea: only react to what can see
� Choose actions, but don’t perform
� Once all chosen, then perform
� Another reason to abstract actions

Player

NPC 1

COMMIT

NPC 2

NPC 3

Draw

� Decides whether to shoot

� Stores intent in the object

� But DOES NOT shoot

� Waits until objects commit

� Checks intent in Ship object

� Performs action for intent

Processing Actions in Lab 3

Ship

GameplayController

� Focus of Game Lab 2
� Crucial if top view
� Major area of research

� Potentially very slow
� n NPCs, g grid squares
� Dijkstra: O(g2)
� For each NPC: O(ng2)

� Moving obstacles?

Problem: Pathfinding

� Focus of Game Lab 2
� Crucial if top view
� Major area of research

� Potentially very slow
� n NPCs, g grid squares
� Dijkstra: O(g2)
� For each NPC: O(ng2)

� Moving obstacles?

Problem: Pathfinding

Often more than 16.7ms

Asynchronous Pathfinding

Update

Draw

• Check for request
• Compute answer
• Store in buffer

G
am

e
Lo

op
Pathing

Engine

Request path

Buffer

Answer

Check

Looks like input buffering!

Thread 1 Thread 2

Asynchronous Pathfinding

� NPCs do not get answer right away
� Check every loop until answered

� Remember request; do not ask again

� What to do until then?
� Act, but don’t think!
� If nothing, fake something

� “Stomping Feet” in RTSs

Cull non-visible objects
Transform visible objects
Draw to backing buffer

The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

Purpose of a Physics Engine

� Moving objects about the screen
� Kinematics: Without regard to external forces

� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision detection: Did a collision occur?
� Collision resolution: What do we do?

� More on this issue later (~Spring Break)

Physics Engines: Two Levels

� White Box: Engine corrects movement errors
� Update object state ignoring physics

� Physics engine nudges object until okay

� Black Box: Engine handles everything
� Do not move objects or update state
� Give forces, mass, velocities, etc. to engine

� Engine updates to state that is close enough

� Almost everything is in loop
� Except asynchronous actions
� Is enough for simple games

� How do we organize this loop?
� Do not want spaghetti code
� Distribute over programmers

The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

Architecture: Organizing Your Code

Architecture: Organizing Your Code

Implementation

Interface

Implementation

Where Did This Come From?

Next Time!

