
gamedesigninitiative
at cornell university

the

Gameplay
Modeling

Next Week: Nondigital Prototype

� No software involved at all
� Board game
� Card game
� Something different?

� Goal is to model gameplay
� How? Nondigital/digital is very different
� Model will be far removed from final result
� What can we hope to learn from this?

� Level design about progress
� Sense of closeness to goal
� Choice of “paths” to goal

(dilemma challenge)
� Path choice can relate to

play style and/or difficult

� Easier to design if discrete
� Flow-chart out progression
� Edges are mechanic(s)

� But game state values are
continuous (sort of)

Understanding Game Progression

� Design is discretization
� Impose flow chart on state
� Each box is an equivalence

class of game states

� Spatial Discretization
� Contiguous zones
� Example: past a doorway

� Resource Discretization
� Range of resource values
� Example: build threshold

Discrete Progression

Discretizing Spacial Locality

Discretizing Spacial Locality

Discretizing Spacial Locality

Discretizing Spacial Locality

Discretizing Spacial Locality

Nature of Discretization

� State must be unambiguous
� Must be an accurate, precise way to determine state
� Example: string to measure distance in a wargame

� Actions must be significant
� May correspond to several animation frames
� Example: movement and attack in single turn

� Mechanics must have compact interactions
� Avoid mechanics that depend on iterated interactions
� Example: physics is iterative and hard to discretize

� Discretization requires turns
� Represent a unit of action
� When done, game “at rest”

� Turns can be multistep
� Multiple actions in a turn
� Evironmental interactions

� Turns can alternate
� between other players
� with a gamemaster
� not at all (one player?)

Discretization and Turns

1. Rally Phase
� Damaged units heal/repair

2. Prep Fire Phase
� Choose units to attack/fire
� Cannot act in later phases

3. Movement Phase
� Move units about the board

4. Defensive Fire Phase
� Opponent (not you) acts
� Fires on units that moved

5. Advancing Fire Phase
� Moved units may now fire
� Combat strength is reduced

6. Rout Phase
� Damage units go for cover

7. Advance Phase
� Move every unit one hex

8. Close Combat phase
� Find enemies on your hexes
� Units engage in combat

A Single Turn in Squad Leader

1. Rally Phase
� Damaged units heal/repair

2. Prep Fire Phase
� Choose units to attack/fire
� Cannot act in later phases

3. Movement Phase
� Move units about the board

4. Defensive Fire Phase
� Opponent (not you) acts
� Fires on units that moved

5. Advancing Fire Phase
� Moved units may now fire
� Combat strength is reduced

6. Rout Phase
� Damage units go for cover

7. Advance Phase
� Move every unit one hex

8. Close Combat phase
� Find enemies on your hexes
� Units engage in combat

A Single Turn in Squad Leader

Simulates (real-time)
player reaction time

� Allow opponent to interrupt
� Action that reacts to yours
� Played after you act, but

before action takes an effect
� Core mechanic in Magic:TG

� Make play asynchronous
� Players still have turns
� But take turns as fast as can
� Conflicts resolved via speed
� Often need a referee for aid

Discretization and Reaction Time

Case Study: Runaway Rails

� “Free runner” with coaster
� Coaster can go faster/slower
� Speed tests reaction time

� Model with hidden info
� Cannot “process” all at once
� Faster go, less screen to see

Reaction Time as Hidden Information

Speed changes # of
columns at each turn

What Can We Do Discretely?

� Evaluate emergent behavior
� Allow player to commit simultaneous actions
� Model interactions as “board elements”

� Model player cost-benefit analyses
� Model all resources with sources and sinks
� Focus on economic dilemma challenges

� Test player difficulty/usability
� Ideal for puzzle games (or puzzle elements)
� Can also evaluate unusual interfaces

Evaluating Emergent Behavior

� Recall: coupled, context-dependent interactions
� Requires an action and interaction

� Or (alternatively) multiple actions

� Model interactions as “board elements”
� Rules to follow after your action
� May follow several in succession

� Examples: Chutes & Ladders,
Bonkers, RoboRally

� Player “programs” robot
� Picks 5 movement cards
� Committed to that choice

� After each card
� Obey board elements in order
� Check robot collisions

� Move = board elements
+ cards + collisions

Case Study: RoboRally

� Necessary if have no interactions
� Allow multiple actions in a turn

� Typically needs complex turns

� Standard method: action points
� Player has so many AP per turn
� Actions cost AP to perform

� Turn done when AP are all spent

� Might want other restrictions
� Groups actions into types
� Require types in certain order
� Example: no attack after move

Multiple Actions

Cost-Benefit Analysis

� Where nondigital prototypes really shine
� Resources are very easy to discretize
� Economic choices easily map to turns
� Understanding dilemma challenges is important

� Some believe this is all of game design
� Claim everything can be reduced to a resource
� Common in board game adaptations of other media
� Example: balance game with instability resource

Case Study: Bounce

Jetpack expends
oxygen (=health)

Tracking Oxygen as a Resource

Case Study: Trino

Can switch
w/ resources

Measuring Shapeshifting Resources

Usability Analysis

� Unusual user-interfaces
� Recall that actions correspond to inputs
� Some inputs are not simple buttons
� Example: touch gestures, motion controls

� Puzzle-style games
� Create a game with module elements (e.g. cards)
� Laying out levels creates a new game level
� Allows you to quickly change and test levels

Usability Analysis: Angry Bunny

Early Design:
Bunny movement
controlled by battery
“attraction”

Modeling Movement Controls

Strings attached
at board corners

Control piece by
pulling strings

Usability Analysis: Family Style

Modeling Multiplayer Restrictions

Difficulty Analysis: Operation Bitwise

Configurable Protoype from Elements

Difficulty Analysis: Prism Break

Can swap
colors

Exploring Specific Level Designs

Most Important Thing: Progression

� Do not want a one-level game
� Major problem with endless runners
� Survival games also have this problem

� We want some evidence of a progression
� What is an easy level?
� What is a medium level?
� What is a hard level?

� Your prototype should be reconfigurable

Easy

Medium

Hard

The Difficulty Curve

Easy Medium Hard

Easy: Prism Break

Medium: Prism Break

Hard: Prism Break

Reconfigurable Prototypes

Case Study: Magic Moving Mansion

Configurable Puzzles at Scale

Reflecting on What You Have Learned

� Your prototype should teach you something
� About one of the things covered today
� Even if it is “this design will not work”

� You will be asked about this at presentation
� Must be prepared to answer
� Write-up as part of submission

� Lesson matters more than physical artifact
� You are not going to sell this prototype

Case Study: Flourish

Case Study: Flourish

Our game seemed unclear at the beginning for some
players because [they had to conceptually] balance
growth above ground and below ground.

…

In general, we learned about the specificity we need for
different rules that we had thought needed less
explanation.

Summary

� Nondigital prototypes are about discretization
� Group continuous state into course groups
� Simplify mechanics into discrete turns
� Sometimes requires mechanics substitution

� They are ideal for early gameplay testing
� Evaluate emergent behavior
� Model player cost-benefit analyses
� Test player difficulty or usability
� Capture player experiences (advanced)

