the . « e e g
gamedesigninitiative
at cornell university
]

Prototyping

What is a Prototype?

® An incomplete model of your product
® Implements small subset of the final features

® Features chosen are the most important now

® Prototype helps you visualize gameplay
® Way for you to test a new game mechanic
® Allows you to tune mechanic parameters

® (Can also test (some) user interfaces

What is a Prototype?

® A prototype helps you visualize subsystems

® Custom lighting algorithms

® Custom physics engine

® Network communication layer

® Fits naturally with the SCRUM sprint

Identify the core mechanic/subsystem to test

Develop subsystem separately 1n sprint

If successful, integrate into main code

Types of Prototypes

® Throwaway prototyping
® Prototype will be discarded after use
® Often created with middleware/prototyping tool
® Useful for gameplay prototype

® Evolutionary Prototyping
® Robust prototype that 1s refined over time
® Code eventually integrated into final product

® Useful for your technical prototype

Case Study: Playing Fields

® Computer map aid for playing D&D
® Provides a map grid for moving tokens about
® Tools for creating tokens and 1mages
® Network support for a DM with many players
® Intelligently obscures player visibility

® Motivation: lessen player “metagaming”
® Physical map displays too much information

® Playing over a network 1s a secondary concern

Case Study: Playing Fields

Player List

2 Gregat/127.0.0.12)

2007.map

File Network GCame Objects Window

Il
Untitled Map

File Ntwork Came Objects Window

(A U-

Decline Accept
| ¥ Dov. i e

7z

Gameplay Prototypes

® Focus on core mechanic (e.g. verb/interaction)
® May want more than one for emergent behavior
® But no more than 2 or 3 mechanics

® Keep challenges very, very simple

® Prototype should allow tuning on the fly
® Requiring a recompile to tune is inefficient
® Use menus/input fields/keyboard commands

® But do not make the Ul too complicated either

Prototyping Playing Fields

® What are the core mechanics?
® Moving a token about a grid
® Using obstacles to block visibility

® Focuses on visibility and user control
® Use a single token with fixed obstructions
® Do not support network play
® Do not worry about invalid moves

® Visibility distance 1s a funable parameter

Playing Fields Prototype

Prototype: Lessons Learned

® Algorithm makes it difficult to see walls
® May want unseen area a color other than black

® May want to “fudge the edge of the boundary”

® Update algorithm does not support “strating”

® Vision 1s updated at start and end of move

® Nothing “in between™ 1s counted (e.g. alleys)

® Spacing of 50 pixels 1s optimal for viewing

3152 Example: Mount Sputnick

Showcase

3152 Example: Mount Sputnick

Prototype

Technical Prototyping

® Technical prototypes used for subsystems
® Custom lighting algorithms

® Custom physics engine

® Network communication layer

® Goal: inspect inner workings of software
® Features might be “invisible” in normal game

® Specialized interface to visualize process

® Not-a-Goal: Make something fun

Case Study: Shadows and Lighting

® Recall gameplay prototype
® Discrete shadows are easy

® But had many problems

® Want something more robust

® (Continuously movement />
® Curved wall edges <
® Self-intersecting shadows \\

® Different features to test %

® Moving an avatar

® Reconfiguring the wall

Case Study: Shadows and Lighting

® Recall gameplay prototype

® Discrete shadows are easy

® But had many problems

® Want something more robust

® (Continuously movement |
® Curved wall edges

® Self-intersecting shadows ' ~——

® Different features to test \V“
® Moving an avatar

® Reconfiguring the wall

Case Study: Shadows and Lighting

Case Study: Agent Movement

® Artificial potential fields
® (Obstacles are repulsive charge
® Goal 1s an attractive charge

® Sum together to get velocity

® Fast real-time movement
® No hard AI algorithms

® But has other problems...

® Will cover later 1n class
® Sce Pathfinding in schedule

Case Study: Agent Movement

Vehicle Location:

) v

Vehicle Radius:

Pt

A
0.0 2.0 4.0 6.0 8.0 10.0
Vehicle Mass:

1

Do n oo oo oo oo oo
0.0 4.0 8.0 12.0 16.0 20.0
Vehicle Charge:

o

P M
0.0 0.2 0.4 0.6 0.8 1.0
Vehicle Damping:

o
T A
0.0 0.2 0.4 0.6 0.8 1.0

Vehicle Maximum Speed:
o
Pt ™M
0.0 0.4 0.8 1.2 1.6 2.0
Instructions:

To create a new vehicle, Control-click
on its desired position. Use a regular
click to select an existing vehicle for
editing. A selected vehicle is indicated
by a heavier border.

Only one vehicle may be selected at a
time. A selected vehicle is pinned and
will not move, but will still exert a
force for ovoidance.

[sbumas | sappeisqo | sapPyap | wbiey |

AN

Case Study: Agent Movement

000
Vehicle Location:
x | y Clear)
Vehicle Radius:
[-‘\‘_./'"\""I""I"“I""l
Q 0.0 2.0 4.0 6.0 8.0 10.0
@ Q Vehicle Mass:
[‘Q' 000000000000 0000(";]
@ @ Vehbicla Chs T
Q \ ! Support controls to
O change parameters on fly
\'\ -
[""\"*_/'lw""l"*w""]

[sbumps |

Make subsystem robust o
(eVOlutionary prOtOtype) \ To create a new vghicle, Control-click

ition. Use aregular
xisting vehicle for
vehicle is indicated

Make interface simple
(throwaway prototype) e pinedan

will still exert a
2.

3152 Example: Forgotten Sky

CEEX

Joint Bias
. : - 0.03
decompampnicube likes you, to6) N .
Player Mass
iy 5
1 J ' ' |
Rope Link Mass
=0 01
W ,
Joint Softness
! 03
Player Ground speed
~ 200
\ 1 ' vd '
Jump Yelocity
i | 300
Physics Iterations
o | 5
v

Rest Length Multiplier
J_ 0.94

Rope Thickness

~ 8
Player Air Speed

- 5000
Rope Speed
~} 0.08
o

Debug Display
1 1

3152 Example: Aiden

Showcase

3152 Example: Aiden

Nondigital Prototypes

Digital or Nondigital”?

Digital Prototypes Nondigital Prototypes

® Advantages ® Advantages
® (loser to final design ® Fast to create, iterate design
® Input and control semantics ® Used by non-programmers
® QGreat for complex systems ® QGreat for resources and
(e.g. physics) game economy
® Disadvantages ® Disadvantages
® Shuts out non-programmers ® [nput and player control

® Longer development time ® Complex systems

Lessons From Nondigital Prototypes

® Evaluate emergent behavior
® Allow player to commit simultaneous actions
® Model interactions as “board elements™

® Model player cost-benefit analyses
® Model all resources with sources and sinks
® Focus on economic dilemma challenges

® Early user testing for player difficulty
® [deal for puzzle games (or puzzle element)
® (Can also evaluate unusual interfaces

Prototypes in this Class

® Required to demo three prototypes in class
® Nondigital prototype next week
® Gameplay prototype on March 15th
® Technical prototype on March 29th

® Nondigital prototype may be trickiest
® Keep 1t simple; avoid a full game
® Focus on dilemma challenges (e.g. choice)

® More details in the next lecture

The Gameplay Prototype

® Throw-away prototype
® Does not have to be 1n Java
® (Can use another language (e.g. C#)

® (Can use authoring tools (e.g. Flash, Unity)

® Goal: demonstrate gameplay
® Challenges impossible 1n nondigital prototype
® Basic player controls and interface

® Primary game mechanic

The Technical Prototype

® Evolutionary prototype
® Should be written 1n Java and LibGDX
® Most of the code will be reused later

® Some of code (e.g. interface) can be thrown away

® Goal: visualization and tuning
® Simple interface displaying core functionality
® Controls (e.g. sliders,console) to change parameters

® Playtest to figure proper setting of parameters

