the
 gamedesigninitiative at cornell university

Uncertainty and Risk

Uncertainty and Risk

- Risk: outcome of action is uncertain
- Perhaps action has random results
- May depend upon opponent's actions
- Need to know what opponent will do
- Two primary means of risk in a game
- Chance and randomness
- Imperfect information

Uncertainty \neq Skill

- Outcomes may depend on player skill
- Hand-eye coordination challenges
- Reaction-time/twitch challenges
- Knowledge of optimal strategies

- Varying skill level \rightarrow uncertain outcomes
- But challenges themselves are predictable
- Player can train at challenge over time
- Not the subject of this lecture

Randomness in Games

- Pure randomness is not a good game
- Remember coin flipping
- Player has no meaningful choice
- But many games are random
- Candyland, Snakes \& Ladders
- Poker, other forms of gambling
- Tetris and other matching, stacking games

Randomness: Candy Land

Randomness: Poker

Randomness with Choice

- Tetris pieces are random, but
- Have a choice in how to position them
- "Hedge your bets" to prepare for bad drops
- RPG combat is die roll influenced by
- Armor the defender wears
- Weapons the attack uses
- Combat maneuvers employed

Randomness with Choice

Pig: A Random Game

- Play progresses clockwise
- On your turn, throw the die:
- If roll 1: lose turn, score zero
- Anything else: add it to score
- Can also roll again (and lose)
- If stop, score is "banked"
- First person to 100 wins.

Strategic Randomness

- Pig has meaningful choice
- Player can choose to bank
- Risk nothing for a higher score

- How is the choice meaningful?
- Certain decisions are better than others
- Certain decisions are more fun than others
- Psychological effect on other players

Expected Value

- Outcome of actions is never the same
- But the sum averages out over many tries
- Strategy: compare average outcomes
- Expected Value $=$ outcome $\times \%$ success
- If many outcomes, sum them together
- Example: Average die roll is 3.5

$$
1 \times 1 / 6+2 \times 1 / 6+3 \times 1 / 6+4 \times 1 / 6+5 \times 1 / 6+6 \times 1 / 6=3.5
$$

- Only applies if can do action repeatedly

Expected Value of Pig

\# Throws	Survial	Expected Gain	Expected Value
1	83%	3.33	3.33
2	69%	2.78	6.11
3	58%	2.32	8.43
4	48%	1.92	10.35
5	40%	1.61	11.96
6	33%	1.34	13.30
7	28%	1.12	14.42
8	23%	.93	15.35
9	19%	.77	16.12
10	16%	.65	16.77
\ldots	\ldots	\ldots	\ldots
50	0.01%	0.0004	19.998

Expected Value and Warcraft

Psychology of Randomness

- Players favor longshots
- Rare event that has very high payoff
- Will work towards it even if not optimal
- Especially if failure is cheap
- Players have "Monte Carlo syndrome"
- After a bad run, expect a good result
- Otherwise, the game is "unfair"

Psychology of Randomness

- Payoff influences the perception
- Players remember events with bigger payoff
- Will think it is "more likely"
- Even if two events equally likely
- Corollary: Lightning never strikes twice
- A bad outcome is unlikely to happen again
- A good outcome will probably happen again

Psychology of Nonrandomness

- Players can view the nonrandom as random
- Example: paper-scissors-rock

Psychology of Nonrandomness

- Players can view the nonrandom as random
- Example: paper-scissors-rock
- Opponent is uncertain, not random
- But there is no choice is better than others
- How do you choose?
- Any game with heavy negative feedback
- "Random" = lack of meaningful choice

Instability vs. Random

- Physics can be sensitive!
- Small input change $=$ big output change
- Games can "feel random"
- Instable challenges
- Difficult to repeat success
- Very difficult to tune
- But popular trend in modern puzzle games

Imperfect Information

- Player may lack information about that game
- May not know complete game state
- May not know all of the rules
- Can reason about likelihood
- Rules eliminate certain possibilities
- Model opponent psychology
- But less precise than probability

Example: Fog of War

Making Information Imperfect

- Hide information
- Fog of war
- Hidden moves
- Hidden die rolls

- Generate random noise
- (Partial) scanner jamming
- Inaccurate troop measurements

Information Types

- Information known to all players
- Information known to one player
- Information know only to the game
- Example: the next card in a deck
- Randomly generated information
- Example: die rolls

Information in Clue

Computers and Information

- Very good at managing information
- Can easily hide information from players
- Can hide very complex information
- Humans have hard time hiding and managing
- Also, too easy to cheat if hidden
- Particularly good at
- Information known only to one player
- Information know only to the game

Randomness vs Imperfect Information

- Randomness used heavily in board games
- Nice way to introduce uncertainty/risk
- Easier to manage than imperfect information
- But not as important for computer games
- Imperfect information is easy to manage
- Complex rules (physics) may seem random
- Deterministic rules are easier to tune
- Even board games realize this (Puerto Rico)

Digital vs. Nondigital Games

Digital Games

- Advantages
- Hiding Information
- Complex mechanics
- Long-distance play
- Disadvantages
- Adaptability
- Product life span

Nondigital Games

- Advantages
- "House Rules"
- Portability/life span
- Multiplayer psychology
- Disadvantages
- Complex mechanics
- Hidden information

Summary

- Uncertainty and risk are important
- Otherwise player is (eventually) unchallenged
- No possibility of strategic choice
- Ways of introducing uncertainty/risk
- Through skill-based challenges
- Through randomness
- Through incomplete information
- Latter is primary strength of computers

