
gamedesigninitiative
at cornell university

the

Game Components

So You Want to Make a Game?

� Will assume you have a design document
� Focus of next week and a half…

� Building off the ideas of previous lecture

� But now you want to start building it
� Need to assign tasks to the team members
� Helps to break game into components

� Each component being a logical unit of work.

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Features of Game Engines

� Power the graphics and sound
� 3D rendering or 2D sprites

� Power the character and strategic AI
� Typically custom designed for the game

� Power the physics interactions
� Must support collisions at a bare minimum

� Describe the systems
� Space of possibilities in game world

Commercial Game Engines

� Libraries that take care of technical tasks
� But systems always need some specialized code

� Game studios buy source code licenses

� Is LibGDX a game engine?
� It has libraries for graphics, physics, and AI
� But you still have to provide code for systems

� Bare bones engine: graphics, physics, audio

Game Engines: Graphics

� Minimum requirements:
� API to import artistic assets
� Routines for manipulating images

� Two standard 3D graphics APIs
� OpenGL: Unix, Linux, Macintosh
� Direct3D: Windows
� But the future is Vulkan…

� For this class, our graphics engine is LibGDX
� Supports OpenGL, but will only use 2D

Game Engines: Physics

� Defines physical attributes of the world
� There is a gravitational force
� Objects may have friction
� Ways in which light can reflect

� Does not define precise values or effects
� The direction or value of gravity
� Friction constants for each object
� Specific lighting for each material

Game Engines: Systems

� Physics is an example of a game system
� Specifies the space of possibilities for a game
� But not the specific parameters of elements

� Extra code that you add to the engine
� Write functions for the possibilities
� But do not code values or when called

� Programmer vs. gameplay designer
� Programmer creates the system
� Gameplay designer fills in parameters

Systems: Super Mario Bros.

� Levels
� Fixed height scrolling maps
� Populated by blocks and enemies

� Enemies
� Affected by stomping or bumping
� Different movement/AI schemes
� Spawn projectiles or other enemies

� Blocks
� Can be stepped on safely
� Can be bumped from below

� Mario (and Luigi) can be small, big, or fiery

Characteristics of an Engine

� Broad, adaptable, and extensible
� Encodes all non-mutable design decisions

� Parameters for all mutable design decisions

� Outlines gameplay possibilities
� Cannot be built independent of design
� But only needs highest level information

� Gameplay specification is sufficient

Data-Driven Design

� No code outside engine; all else is data
� Purpose of separating system from parameters
� Create game content with level editors

� Examples:
� Art, music in industry-standard file formats
� Object data in JSON or other data file formats
� Character behavior specified through scripts

� Major focus for alpha release

Popular Indie Engines

� Use data-driven design
� All code is in “scripts”
� Core code is inaccessible

� But can be a problem!
� Most systems are built-in
� Changing can be a fight
� Or extremely inefficient
� Designer has less control

� Why AAAs moved away
� In past, source code license
� Now engines all in-house

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Rules & Mechanics

� Fills in the values for the system
� Parameters (e.g. gravity, damage amounts, etc.)
� Types of player abilities/verbs
� Types of world interactions
� Types of obstacles/challenges

� But does not include specific challenges
� Just the list all challenges that could exist
� Contents of the palette for level editor

Rules: Super Mario Bros.

� Enemies
� Goombas die when stomped
� Turtles become shells when stomped/bumped
� Spinys damage Mario when stomped
� Piranha Plants aim fireballs at Mario

� Environment
� Question block yields coins, a power-up, or star
� Mushroom makes Mario small
� Fire flower makes Mario big and fiery

Rules: Super Mario Bros.

� Enemies
� Goombas die when stomped
� Turtles become shells when stomped/bumped
� Spinys damage Mario when stomped
� Piranha Plants aim fireballs at Mario

� Environment
� Question block yields coins, a power-up, or star
� Mushroom makes Mario small
� Fire flower makes Mario big and fiery

Will be the topic of next few lectures

Game AI: Where Does it Go?

� Game AI is traditionally placed in mechanics
� AI needs rules to make right choices
� Tailor AI to give characters personalities

� But it is implemented by programmer
� Search algorithms/machine learning
� Shouldn’t these be in game engine?

� Holy Grail: “AI Photoshop” for designers
� Hides all of the hard algorithms

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Interfaces

� Interface specifies
� How player does things (player-to-computer)
� How player gets feedback (computer-to-player)

� More than engine+mechanics
� Describes what the player can do
� Do not specify how it is done

� Bad interfaces can kill a game

Interface: Dragon Age

Interface: Dead Space

Designing Visual Feedback

� Designing for on-screen activity
� Details are best processed at the center
� Peripheral vision mostly detects motion
� Visual highlighting around special objects

� Designing for off-screen activity
� Keep HUD elements out of the center
� Flash the screen for quick events (e.g. being hit)
� Dim the screen of major events (e.g. low health)

Interface: Witcher 3

Other Forms of Feedback

� Sound
� Player can determine type, distance
� In some set-ups, can determine direction
� Best for conveying action “off-screen”

� Haptics (e.g. Rumble Shock)
� Good for proximity only (near vs. far)
� Either on or off; no type information
� Limit to significant events (e.g. getting hit)

Traditional Way to Break Up a Game

� Game Engine
� Software, created primarily by programmers

� Rules and Mechanics
� Created by the designers, with programmer input

� User Interface
� Coordinated with programmer/artist/HCI specialist

� Content and Challenges
� Created primarily by designers

Content and Challenges

� Content is everything else

� Gameplay content defines the actual game
� Goals and victory conditions
� Missions and quests
� Interactive story choices

� Non-gameplay content affects player experience
� Graphics and cut scenes
� Sound effects and background music
� Non-interactive story

Mechanics vs. Content

� Content is the layout of a specific level
� Where the exit is located
� The number and types of enemies

� Mechanics describe what these do
� What happens when player touches exit
� How the enemies move and hinder player

� Mechanics is the content palette

Mechanics vs. Content

Mechanics vs. Content
palette

Why the division?

� They are not developed sequentially
� Content may requires changes to game engine
� Interface is changing until the very end

� Intended to organize your design
� Engine: decisions to be made early, hard-code
� Mechanics: mutable design decisions
� Interface: how to shape the user experience
� Content: specific gameplay and level-design

Milestones Suggestions

Nondigital Gameplay Technical Alpha Beta Release

Pre-Engine
Tech

Completed
Game Engine

Mechanics (Design) Mechanics
(Implementation)

Interface
(Functional Mock-up) Interface (Polishing)

Content

Summary

� Game is divided into four components
� Should keep each in mind during design

� Key for distributing work in your group

� But they are all interconnected
� System/engine limits your possible mechanics
� Content is limited by the type of mechanics

� Once again: design is iterative

