the . « e e g
gamedesigninitiative
at cornell university
]

Strategic Al

Role of Al in Games

® Autonomous Characters (NPCs)

® Mimics the “personality” of the character

® May be opponent or support character

® Strategic Opponents
® Al at the “player level”

® (losest to classical Al

® Character Dialog
® [ntelligent commentary

® Narrative management (e.g. Facade)

Rule-Based Al

If X'is true, Thendo Y Three-Step Process

® Match

o ® For each rule, check if
atc ® Return a/l/ matches
Matching ® Resolve

Rules
® Can only use one rule

® Use metarule to pick one

Updated
State

«—

Selected ® Act
Rule
® Do then-part

Example: Tic-Tac-Toe

® Next move for player O?
® [f have a winning move, make it

® [f opponent can win, block it

® [f the center 1s available, take 1t

® Corners are better than edges

® Very easy to program
® Just check the board state

® Tricky part 1s prioritization

Example: Microsoft's Age of Kings

: The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
(game-time > 1100)
=>
(attack-now)
(enable-timer 7 1100))
)
(defrule
(timer-triggered 7) (defend-soldier-count >= 12)
=>
(attack-now)
(disable-timer 7)
(enable-timer 7 1400)

The Problems with Rules

® Rules only do one step

® May not be best move

® (Could lose long term X X X

® Next move for player O? X

® [f can win, then do 1t

e IfX can win, then block it X X X X0OX
O

® Take the center if possible o o .
® (Corners > edges X o X 0 X

® Need to look ahead

S

The Problems with Rules

® Rules only do one step

® May not be best move | |

® Could lose long term . x o x D
® Next move for player O? —

® [f can win, then do it x

® [f X can win, then block it D

H><

® Take the center if possible

O X

X |

® (Corners > edges

® Need to look ahead

Multiple Steps: Planning

® Plan: actions necessary to reach a goal
® Goal 1s a (pseudo) specific game state

® Actions change game state (e.g. verbs)

® Planning: steps to generate a plan
® Initial State: state the game 1s currently in
® Goal Test: determines 1f state meets goal

® Operators: action the NPC can perform

What Should We C

o
N

N

Slide courtesy of John Laird

~_ . A 7
Pickup? Shoot? Pickup?

\l/

®

Simplification: No Opponent

® [dentify desired goal
® Ex: Kill enemy, get gold initial state

® Design appropriate test act,
1’4

® [st all relevant actions later state
® Ex: Build, send troops

® J.ook-ahead Search

act, act3

@0
® Start with 1nitial state 1
® Try all actions (look-ahead) 00 ' "TY |
® Stop if reached goal

® Continue if not at goal Tree Search

Planning Issues

® Exponential choices

® Search action sequences
® How far are we searching?
® (Cannot do this in real life!
® Game state 1s complex \
® Do we look at entire state? © ®0

® Faster to “do” than to plan l 1

® Must limit search

® Reduce actions examined

® Simplify game state

Internal State Representation

Simplified World Model

Uses of Internal State

Includes primary resources

® Example: ammo, health

Rough notion of position
® Example: in/outside room

® Both characters and items

Game mechanic details
® Example: respawn rate

® Allows tactical decisions

® Notice changes
® Health 1s dropping

® Enemy must be nearby

® Remember recent events
® Enemy has left the room

® (Chase after fleeing enemy

® Remember older events

® Picked up health 30 sec ago

Internal State Representation

Simplified World Model Uses of Internal State

® Includes primary resources ® Notice changes

® Example: ammo, health ® Health is dropping

r-- \
® Rough notion of position ° tby
, : totype J
e Examp Non Digﬁa\ P1o 2nts
: on-
® Both S'lml\af 10 _ —ao1€TT the room

® (hase after fleeing enem
® (Game MEta....av-uctails g y

® Example: respawn rate ® Remember older events

® Allows tactical decisions ® Picked up health 30 sec ago

Internal State and Memory

® Each NPC has own state
® Represents NPC memory

® Might not be consistent

® Useful for character Al
® Models sensory data

® Models communication

® [solates planning

® Each NPC plans separately

® (Coordinate planning with
a strategic manager

Strategy versus Tactics

Slide courtesy of Dave Mark

Strategic
E Manager S

Tactical
Manager
Agent Agent Agent Agent

Tactical

Manager

Agent Agent Agent Agent
Tactical

Manager

Agent Agent Agent Agent Agent Agent Agent Agent

Goal

Tactical
Manager

Internal State for Quake ||

Self

Current-health
® [ast-health

® (Current-weapon
® Ammo-left
® (Current-room
® Last-room
® (Current-armor
® Last-armor
® Available-weapons
Enemy
® (Current-weapon
® (Current-room
® [ast-seen-time
® Estimated-health

Current-time

Random-number

Powerup
® Type
® Room

® Available
® Estimated-spawn-time

Map

® Rooms
® Halls

® Paths

Parameters

Full-health
Health-powerup-amount
Ammo-powerup-amount
Respawn-rate

Internal Action Representation

Simplified Action Model Designing Actions

® Internal Actions = operators ® Extrapolate from gameplay
® Just mathematical functions ® Start with an internal state
® Operators alter internal state ® Pick “canonical” game state

® Pre-conditions ® Apply game action to state

: : : ® Back to int | stat
® What is required for action ack 1o Interhat state
® Often resource requirement ® Remove any uncertainty
o L .
e FEffects Deterministic NPC behavior

: ® “Average” random results
® How action changes state &

[” .
® Both global and for NPC Or pick worse case scenario

Internal Action Representation

Simplified Action Model Designing Actions
® Internal Actions = operators ® Extrapolate from gameplay
® Just mathematical functions ® Start with an internal state
® Operators alter internal state ® Pick “ce~-~-" " aame state
® Pre-cond*” Gameplay Speciﬂca“m}’ q p state
e What Like Lad . o combined e

jons, | .
e Often. but action>, ~——emove any uncertainty

e FEffects ® Deterministic NPC behavior

: ® “Average” random results
® How action changes state &

[” .
® Both global and for NPC Or pick worse case scenario

Example: Pick-Up Health Op

® Preconditions:
® Self.current-room = Powerup.current-room
® Self.current-health < full-health
® Powerup.type = health

® Powerup.available = yes

® Kffects:
® Seclf.last-health = self.current-health

® Self.current-health = current-health + health-powerup-amount
® Powerup.available = no

® Powerup.estimated-spawn-time = current-time + respawn-rate

Building Internal Models

® Planning 1s only as accurate as model
® Bad models =» bad plans

® But complex models =» slow planning

® Look at your nondigital prototype!
® Heavily simplified for playability
® Resources determine internal state

® Nondigital verbs are internal actions

® One of many reasons for this exercise

What Should We C

o
N

Slide courtesy of John Laird

~_ - A 7
Pickup? Shoot? Pickup?

\l/

Self.current-health = 20 Enemy.estimated-health = 50 Powerup.type = health-pak

Self.current-weapon = blaster Powerup.available = yes
Powerup.type = Railgun
Powerup.available = yes

One Step: Pick-up Railgun

Slide courtesy of John Laird

~_ - A /7
Pickup Shoot? Pickup?

\I/

Self.current-health = 10 Enemy.estimated-health = 50 Powerup.type = health-pak

Self.current-weapon = railgun Powerup.available = yes
Powerup.type = Railgun
Powerup.available = no

One Step: Shoot Enemy

Slide courtesy of John Laird

™

Pickup?

" 4
Shoot

\l/

/7

Pickup?

Self.current-health = 10
Self.current-weapon = blaster

Enemy.estimated-health = 40 Powerup.type = health-pak

Powerup.available = yes
Powerup.type = Railgun
Powerup.available = yes

One Step: Pick-up Health-Pak

Slide courtesy of John Laird

™ A

Pickup? Shoot?

7

Pickup

®

Self.current-health = 90 Enemy.estimated-health = 50
Self.current-weapon = blaster

Powerup.type = health-pak
Powerup.available = no
Powerup.type = Railgun
Powerup.available = yes

State Evaluation Function

® Need to compare states

® [s either state better?

® How far away 1s goal?

® Might be partial order

‘)
® Some states incomparable ‘ ‘

® [fnot goal, just continue

® Purpose of planning

® Find good states
® Avoid bad states

State Evaluation: Quake Il

¢ Example 1: Prefer higher self.current-health
® Always pick up health powerup
® Counter example:
® Self.current-health = 99%

® Enemy.current-health = 1%

® Example 2: Prefer lower enemy.current-health
® Always shoot enemy

® Counter example:
® Self.current-health = 1%
® Enemy.current- health = 99%

State Evaluation: Quake Il

® Example 3: Prefer higher self.health — enemy.health
® Shoot enemy if I have health to spare
® (Otherwise pick up a health pack

® Counter examples?

® Examples of more complex evaluations
® [f self.health > 50% prefer lower enemy.health
® Otherwise, want higher self.health
® [f self.health > low-health prefer lower enemy.health
® Otherwise, want higher self.health

Two Step Look-Ahead

Slide courtesy of John Laird

Shoot

Pickup
Self.current-health = 80 Enemy.estimated-health = 40 Powerup.type = health-pak
Self.current-weapon = blaster Powerup.available = no

Powerup.type = Railgun
Powerup.available = yes

Three Step Look-Ahead

Slide courtesy of John Laird

— Shoot

Pickup

Pickup

T~

Self.current-health = 100

Enemy.estimated-health = 0 Powerup.type = health-pak

Self.current-weapon = railgun Powerup.available = no

Powerup.type = Railgun
Powerup.available = no

Look-Ahead Search

One-Step Lookahead Multistep Tree Search

op pickBest(state) { [op] bestPath(8estate,depth) {

if depth == 0 { return [] }

foreach op satisfying precond {
newstate = op(state) newstate = op(state)
[nop]=bestPath(newstate,depth-1)
evaluate newstate

foreach op satisfying precond {

evaluate newstate

})
return op with best evaluation pick op+[nop] with best state
modify state to reflect op+[nop]

return op+[nop]

Look-Ahead Search

® Are more steps better?
® [onger, more elaborate plans
® More time & space consuming
® Opponent or environment can mess up plan

® Simplicity of internal model causes problems

® In this class, limit three or four steps
® Anything more, and Al 1s too complicated

® Purpose is to be challenging, not to win

Recall: LibGDX Behavior Trees

® Selector rules

® Tests each subtask for success

® Tasks are tried independently

Subtask \ Subtask \

® (Chooses first one to succeed

® Sequence rules

® Tests each subtask for success
® Tasks are tried in order

Subtask \

® Does all if succees; else none

Subtask \

® Parallel rules
® Tests each subtask for success
® Tasks are tried simultaneously

Subtask \ Subtask \ ® Does all if succees; else none

Recall: LibGDX Behavior Trees

4)
Lookahead search,
but only checks if
Subtask \ plan is acceptable

il 2

Subtask \
e

® Sequence rules h
® Tests each subtask for success
® Tasks are tried in order
! Subtask \ Subtask \ ® Does all if succees; else none y

Subtask \ Subtask \

Opponent: New Problems

Slide courtesy of John Laird

M < Pickup? - % - Pickup? —» ‘

Sho 0t‘7 0
Plckup‘7 Plckup
Self.current-health = 20 Enemy.estimated-health = 50 Powerup.type = health-pak
Self.current-weapon = blaster Powerup.available = yes

Powerup.type = Railgun
Powerup.available = yes

Opponent Model

® Solution 1: Assume the worst
® Opponent does what would be worst for you

® Full game tree search; exponential

® Solution 2: What would I do?

® Opponent does what you would 1n same situation

® Solution 3: Internal opponent model
® Remember what did last time

® Or remember what they like to do

Opponent Interference

® Opponent actions may prevent yours
® Example: Opponent grabs railgun first

® Need to take 1nto account in your plan

® Solution: Iteration
® Plan once with no interference
® Run again, assuming best plans of the opponent

® Keep iterating until happy (or run out of time)

® Planning 1s very expensive!

Asynchronous Al

Game Thread

Check

Second Thread

Request Plan)\
Al
Manager
w

Answer

® Check for request
¢ Compute answer

® Store in buffer

Alternative: lterative Al

Game Thread Al Manager

Initialize

i Update

Result

Alternative: lterative Al

Game Thread Al Manager

Initialize

i Update

Result

% Looks like asset management)

Using Asynchronous Al

® Give Al a time budget

® [f planning takes too long, abort it

® Use counter 1n update loop to track time

® Beware of stale plans
® Actual game state has probably changed
® When find a plan, make sure it is still good
® Evaluate (quickly) with new internal state

® Make sure result 1s “close” to what thought

Planning: Optimization

® Backwards Planning
® Idea: few operators achieve goal conditions
® Implementation:
® For each operator, reverse the effect

® Check reversed effect satisfies pre-conditions

® Possible to use backwards and forwards
® Start on each end, and check for meets

® Does not work well with numerical resources

To Plan or Not to Plan

® Advantages
® [ess predictable behavior
® (Can handle unexpected situations

® More accurate than rule-based Al

® Disadvantages
® [ess predictable behavior (harder to debug)
® Planning takes a lot of processor time
® Planning takes memory

® Need simple but accurate internal representations

Other Possibilities

® There are many more options available
® Neural nets
® Decision trees
® General machine learning
® Take CS 4700 1f want to learn more

® Quality 1s a matter of heated debate
® Better to spend time on internal state design

® Most Al 1s focused on perception modeling

Summary

® Rule-based Al 1s simplest form of strategic Al
® Only limited to one-step at a time
® (Can casily make decisions that lose in long term

® More complicated behavior requires planning
® Simplify the game to turn-based format
® Use classic Al search techniques

® Planning has advantages and disadvantages

® Remember, the desire 1s to challenge, not to win

