
gamedesigninitiative
at cornell university

the

Strategic AI

Role of AI in Games

� Autonomous Characters (NPCs)
� Mimics the “personality” of the character
� May be opponent or support character

� Strategic Opponents
� AI at the “player level”
� Closest to classical AI

� Character Dialog
� Intelligent commentary
� Narrative management (e.g. Façade)

If X is true, Then do Y

Rule-Based AI

Three-Step Process

� Match
� For each rule, check if
� Return all matches

� Resolve
� Can only use one rule
� Use metarule to pick one

� Act
� Do then-part

Match

Act Resolve
Conflicts

Matching
Rules

Selected
Rule

Updated
State

Example: Tic-Tac-Toe

� Next move for player O?
� If have a winning move, make it
� If opponent can win, block it
� If the center is available, take it
� Corners are better than edges

� Very easy to program
� Just check the board state
� Tricky part is prioritization

Example: Microsoft’s Age of Kings
; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
(game-time > 1100)
=>
(attack-now)
(enable-timer 7 1100))

)
(defrule

(timer-triggered 7) (defend-soldier-count >= 12)
=>
(attack-now)
(disable-timer 7)
(enable-timer 7 1400)

)

� Rules only do one step
� May not be best move
� Could lose long term

� Next move for player O?
� If can win, then do it
� If X can win, then block it
� Take the center if possible
� Corners > edges

� Need to look ahead

The Problems with Rules

� Rules only do one step
� May not be best move
� Could lose long term

� Next move for player O?
� If can win, then do it
� If X can win, then block it
� Take the center if possible
� Corners > edges

� Need to look ahead

The Problems with Rules

Multiple Steps: Planning

�Plan: actions necessary to reach a goal
� Goal is a (pseudo) specific game state
� Actions change game state (e.g. verbs)

�Planning: steps to generate a plan
� Initial State: state the game is currently in
� Goal Test: determines if state meets goal
� Operators: action the NPC can perform

What Should We Do?

Pickup? Pickup?Shoot?

Slide courtesy of John Laird

� Identify desired goal
� Ex: Kill enemy, get gold
� Design appropriate test

� List all relevant actions
� Ex: Build, send troops

� Look-ahead Search
� Start with initial state
� Try all actions (look-ahead)
� Stop if reached goal
� Continue if not at goal

Simplification: No Opponent

Tree Search

act2 act3act1

initial state

later state

� Exponential choices
� Search action sequences
� How far are we searching?
� Cannot do this in real life!

� Game state is complex
� Do we look at entire state?
� Faster to “do” than to plan

� Must limit search
� Reduce actions examined
� Simplify game state

Planning Issues

Simplified World Model

� Includes primary resources
� Example: ammo, health

� Rough notion of position
� Example: in/outside room
� Both characters and items

� Game mechanic details
� Example: respawn rate
� Allows tactical decisions

Internal State Representation

Uses of Internal State

� Notice changes
� Health is dropping
� Enemy must be nearby

� Remember recent events
� Enemy has left the room
� Chase after fleeing enemy

� Remember older events
� Picked up health 30 sec ago

Simplified World Model

� Includes primary resources
� Example: ammo, health

� Rough notion of position
� Example: in/outside room
� Both characters and items

� Game mechanic details
� Example: respawn rate
� Allows tactical decisions

Internal State Representation

Uses of Internal State

� Notice changes
� Health is dropping
� Enemy must be nearby

� Remember recent events
� Enemy has left the room
� Chase after fleeing enemy

� Remember older events
� Picked up health 30 sec ago

Similar to Non-Digital Prototype

� Each NPC has own state
� Represents NPC memory
� Might not be consistent

� Useful for character AI
� Models sensory data
� Models communication

� Isolates planning
� Each NPC plans separately
� Coordinate planning with

a strategic manager

Internal State and Memory

?

Strategy versus Tactics

Agent Agent Agent Agent

Tactical
Manager

Agent Agent Agent Agent

Tactical
Manager

Agent Agent Agent Agent

Tactical
Manager

Strategic
Manager

Agent Agent Agent Agent

Tactical
Manager

Goal

Goal Goal

Goal

Slide courtesy of Dave Mark

� Self
� Current-health

� Last-health
� Current-weapon

� Ammo-left
� Current-room

� Last-room
� Current-armor

� Last-armor
� Available-weapons

� Enemy
� Current-weapon
� Current-room
� Last-seen-time
� Estimated-health

� Current-time

� Random-number

� Powerup
� Type
� Room
� Available
� Estimated-spawn-time

� Map
� Rooms
� Halls
� Paths

� Parameters
� Full-health
� Health-powerup-amount
� Ammo-powerup-amount
� Respawn-rate

Internal State for Quake II

Simplified Action Model

� Internal Actions = operators
� Just mathematical functions
� Operators alter internal state

� Pre-conditions
� What is required for action
� Often resource requirement

� Effects
� How action changes state
� Both global and for NPC

Internal Action Representation

Designing Actions

� Extrapolate from gameplay
� Start with an internal state
� Pick “canonical” game state
� Apply game action to state
� Back to internal state

� Remove any uncertainty
� Deterministic NPC behavior
� “Average” random results
� Or pick worse case scenario

Simplified Action Model

� Internal Actions = operators
� Just mathematical functions
� Operators alter internal state

� Pre-conditions
� What is required for action
� Often resource requirement

� Effects
� How action changes state
� Both global and for NPC

Internal Action Representation

Designing Actions

� Extrapolate from gameplay
� Start with an internal state
� Pick “canonical” game state
� Apply game action to state
� Back to internal state

� Remove any uncertainty
� Deterministic NPC behavior
� “Average” random results
� Or pick worse case scenario

Like Gameplay Specification,

but actions, interactions combined

Example: Pick-Up Health Op

� Preconditions:
� Self.current-room = Powerup.current-room
� Self.current-health < full-health
� Powerup.type = health
� Powerup.available = yes

� Effects:
� Self.last-health = self.current-health
� Self.current-health = current-health + health-powerup-amount
� Powerup.available = no
� Powerup.estimated-spawn-time = current-time + respawn-rate

Building Internal Models

� Planning is only as accurate as model
� Bad models è bad plans
� But complex models è slow planning

� Look at your nondigital prototype!
� Heavily simplified for playability
� Resources determine internal state
� Nondigital verbs are internal actions

� One of many reasons for this exercise

What Should We Do?

Pickup? Pickup?Shoot?

Powerup.type = health-pak
Powerup.available = yes
Powerup.type = Railgun
Powerup.available = yes

Enemy.estimated-health = 50 Self.current-health = 20
Self.current-weapon = blaster

Slide courtesy of John Laird

One Step: Pick-up Railgun

Pickup Pickup?Shoot?

Powerup.type = health-pak
Powerup.available = yes
Powerup.type = Railgun
Powerup.available = no

Enemy.estimated-health = 50 Self.current-health = 10
Self.current-weapon = railgun

Slide courtesy of John Laird

One Step: Shoot Enemy

Pickup? Pickup?Shoot

Powerup.type = health-pak
Powerup.available = yes
Powerup.type = Railgun
Powerup.available = yes

Enemy.estimated-health = 40 Self.current-health = 10
Self.current-weapon = blaster

Slide courtesy of John Laird

One Step: Pick-up Health-Pak

Pickup? PickupShoot?

Powerup.type = health-pak
Powerup.available = no
Powerup.type = Railgun
Powerup.available = yes

Enemy.estimated-health = 50 Self.current-health = 90
Self.current-weapon = blaster

Slide courtesy of John Laird

� Need to compare states
� Is either state better?
� How far away is goal?

� Might be partial order
� Some states incomparable
� If not goal, just continue

� Purpose of planning
� Find good states
� Avoid bad states

State Evaluation Function

<
?

State Evaluation: Quake II

� Example 1: Prefer higher self.current-health
� Always pick up health powerup
� Counter example:

� Self.current-health = 99%
� Enemy.current-health = 1%

� Example 2: Prefer lower enemy.current-health
� Always shoot enemy
� Counter example:

� Self.current-health = 1%
� Enemy.current- health = 99%

State Evaluation: Quake II

� Example 3: Prefer higher self.health – enemy.health
� Shoot enemy if I have health to spare
� Otherwise pick up a health pack
� Counter examples?

� Examples of more complex evaluations
� If self.health > 50% prefer lower enemy.health

� Otherwise, want higher self.health
� If self.health > low-health prefer lower enemy.health

� Otherwise, want higher self.health

Two Step Look-Ahead

Pickup

Powerup.type = health-pak
Powerup.available = no
Powerup.type = Railgun
Powerup.available = yes

Enemy.estimated-health = 40Self.current-health = 80
Self.current-weapon = blaster

Shoot

Slide courtesy of John Laird

Three Step Look-Ahead

Pickup

Powerup.type = health-pak
Powerup.available = no
Powerup.type = Railgun
Powerup.available = no

Enemy.estimated-health = 0 Self.current-health = 100
Self.current-weapon = railgun

Shoot Pickup

Slide courtesy of John Laird

One-Step Lookahead

op pickBest(state) {

foreach op satisfying precond {

newstate = op(state)

evaluate newstate

}

return op with best evaluation

}

Look-Ahead Search

Multistep Tree Search

[op] bestPath(&state,depth) {
if depth == 0 { return [] }
foreach op satisfying precond {

newstate = op(state)
[nop]=bestPath(newstate,depth-1)
evaluate newstate

}
pick op+[nop] with best state
modify state to reflect op+[nop]
return op+[nop]

}

Look-Ahead Search

� Are more steps better?
� Longer, more elaborate plans
� More time & space consuming
� Opponent or environment can mess up plan
� Simplicity of internal model causes problems

� In this class, limit three or four steps
� Anything more, and AI is too complicated
� Purpose is to be challenging, not to win

� Selector rules
� Tests each subtask for success
� Tasks are tried independently
� Chooses first one to succeed

� Sequence rules
� Tests each subtask for success
� Tasks are tried in order
� Does all if succees; else none

� Parallel rules
� Tests each subtask for success
� Tasks are tried simultaneously
� Does all if succees; else none

Recall: LibGDX Behavior Trees

Subtask

?

Subtask Subtask

Subtask

→

Subtask Subtask

Subtask

⇶

Subtask Subtask

Selector rules
Tests each subtask for success
Tasks are tried independently
Chooses first one to succeed

� Sequence rules
� Tests each subtask for success
� Tasks are tried in order
� Does all if succees; else none

Parallel rules
Tests each subtask for success
Tasks are tried simultaneously
Does all if succees; else none

Recall: LibGDX Behavior Trees

Subtask

?

Subtask Subtask

Subtask

→

Subtask Subtask

Subtask

⇶

Subtask Subtask

Lookahead search,
but only checks if
plan is acceptable

Opponent: New Problems

Pickup? Pickup?

Powerup.type = health-pak
Powerup.available = yes
Powerup.type = Railgun
Powerup.available = yes

Enemy.estimated-health = 50 Self.current-health = 20
Self.current-weapon = blaster

Shoot?

Pickup? Pickup?

Slide courtesy of John Laird

Opponent Model

� Solution 1: Assume the worst
� Opponent does what would be worst for you
� Full game tree search; exponential

� Solution 2: What would I do?
� Opponent does what you would in same situation

� Solution 3: Internal opponent model
� Remember what did last time
� Or remember what they like to do

Opponent Interference

� Opponent actions may prevent yours
� Example: Opponent grabs railgun first
� Need to take into account in your plan

� Solution: Iteration
� Plan once with no interference
� Run again, assuming best plans of the opponent
� Keep iterating until happy (or run out of time)

� Planning is very expensive!

Asynchronous AI

AI
Manager

Request Plan

Game Thread Second Thread

Update

Draw � Check for request
� Compute answer
� Store in buffer

Buffer

Answer

Check

Alternative: Iterative AI

Asset Loader

Game Thread AI Manager

Update

Draw

Initialize

Update

Result

Alternative: Iterative AI

Asset Loader

Game Thread AI Manager

Update

Draw

Initialize

Update

Result

Looks like asset management

Using Asynchronous AI

� Give AI a time budget
� If planning takes too long, abort it
� Use counter in update loop to track time

� Beware of stale plans
� Actual game state has probably changed
� When find a plan, make sure it is still good
� Evaluate (quickly) with new internal state
� Make sure result is “close” to what thought

Planning: Optimization

� Backwards Planning
� Idea: few operators achieve goal conditions
� Implementation:
� For each operator, reverse the effect
�Check reversed effect satisfies pre-conditions

� Possible to use backwards and forwards
� Start on each end, and check for meets
� Does not work well with numerical resources

To Plan or Not to Plan

� Advantages
� Less predictable behavior
� Can handle unexpected situations
� More accurate than rule-based AI

� Disadvantages
� Less predictable behavior (harder to debug)
� Planning takes a lot of processor time
� Planning takes memory
� Need simple but accurate internal representations

Other Possibilities

� There are many more options available
� Neural nets
� Decision trees
� General machine learning
� Take CS 4700 if want to learn more

� Quality is a matter of heated debate
� Better to spend time on internal state design
� Most AI is focused on perception modeling

Summary

� Rule-based AI is simplest form of strategic AI
� Only limited to one-step at a time
� Can easily make decisions that lose in long term

� More complicated behavior requires planning
� Simplify the game to turn-based format
� Use classic AI search techniques

� Planning has advantages and disadvantages
� Remember, the desire is to challenge, not to win

