the . « e e g
gamedesigninitiative
at cornell university
]

Character
Behavior

Classical Al vs. Game Al

® Classical: Design of intelligent agents
® Percelves environment, maximizes 1ts Success
® Established area of computer science

® Subtopics: planning, machine learning

® Game: Design of rational behavior
® Does not need to optimize (and often will not)
® Often about “scripting” a personality

® More akin to cognitive science

Take Away for This Lecture

® Review the sense-think-act cycle
® How do we separate actions and thinking?
® Declay the sensing problem to next time

® What 1s rule-based character AI?

® How does it relate to sense-think-act?
® What are 1ts advantages and disadvantages?

® What alternatives are there to rule-based AI?
® What 1s our motivation for using them?
® How do they affect the game architecture?

Role of Al in Games

® Autonomous Characters (NPCs)

® Mimics the “personality” of the character

® May be opponent or support character

® Strategic Opponents
® Al at the “player level”

® (losest to classical Al

® Character Dialog
® [ntelligent commentary

® Narrative management (e.g. Facade)

Role of Al in Games

® Autonomous Characters (NPCs)

® Mimics the “personality” of the character

® May be opponent or support character

® Strategic Opponents
® Al at the “player level”

® (losest to classical Al

® Character Dialog
® [ntelligent commentary

® Narrative management (e.g. Facade)

Review: Sense-Think-Act

® Sense:
® Perceive the world
® Reading the game state
® Example: enemy near?

® Think:
® Choose an action
® (Often merged with sense
¢ Example: fight or flee

® Act:
® Update the state
® Simple and fast
® Example: reduce health

S-T-A: Separation of Logic

® Loops = sensing

® Read other objects
® Aggregate for thinking

® Example: nearest enemy

® Conditionals = thinking
® Use results of sensing
® Switch between possibilities

® Example: attack or flee

® Assignments = actions
® Rarely need loops

® Avoid conditionals

move(int direction) {
switch (direction) {
case NORTH:
y=1
break;
case EAST:
X +=1;
break;
case SOUTH.:
y+=1;
break;
case WEST:
x-=1,
break;
}
}

S-T-A: Separation of Logic

® Loops = sensing
® Read other objects
® Aggregate for thinking

® Example: nearest enemy

® Conditionals = thinking
® Use results of sensing
® Switch between possibilities

® Example: attack or flee

® Assignments = actions
® Rarely need loops

® Avoid conditionals

move(int direction) {
switch (direction) {

S-T-A: Separation of Logic

® Loops = sensing move(int direction) {
, switch (direction) {
® Read other objects

® Aggregate for thinking

® Example: nearest enemy

® Conditionals = thinking move(int dx, int dy) {

® Use results of sensing X += gX;
: vy eqels y +=ay;
® Switch between possibilities }
® Example: attack or flee oso WEST.
® Assignments = actions Xm;at.

® Rarely need loops

® Avoid conditionals }

S-T-A: Reducing Dependencies

Actorl Actor2
Controller Controller

‘ GameState \

S-T-A: Reducing Dependencies

- Actorl Actor2
V' aa Controller Controller

Compute
Sensing

‘ GameState \

) UN

S-T-A: Reducing Dependencies

Actorl Actor2
Controller Controller

/ /

Compute
Thinking

\\

|

\
|

\\ \
\ \\

S-T-A: Reducing Dependencies

Actor]l | \ Actor2
Controller Com.pute L Controller
Actions e

\
\ \
\)
\ 4
\ 4
\

‘ GameState \

Review: Sense-Think-Act

® Sense:
® Perceive the world
® Reading the game state
® Example: enemy near?

/ Think: \

® (Choose an action

® (Often merged with sense
¢ Example: fight or flee

® Act:
® Update the state
® Simple and fast
® Example: reduce health

Actions: Short and Simple

move(int direction) {

. . :
Mainly use assignments switch (direction) {

® Avoid loops, conditionals

® Similar to getters/setters

® Complex code in thinking

move(int dx, int dy) {

® Helps with serializability x += dx;
: y +=dy;
® Record and undo actions }
® Helps with networking case WEST:
x/= 1,
® Keep doing last action reak:

® Recall: dead reckoning

Delaying Actions

Sequential Actions are Bad

Choose Action; Apply Later

|

Think (Choose)
& Act (Apply)

Thinking: Primary Challenge

® A mess of conditionals if (sense;) {

® “Spaghetti” code if (Sensell) {..

else if (sense
* Difficult to modify } else if (senses)!

} else if (sense;z){ ...

® Abstraction requirements: } else {...
}

® FEasy to visualize models
} else if (sensey) {

® Mirror “cognitive thought” if (senses;) {

® Want to separate talent } else if (sensega){ ...
} else {...

}

} else if (sensex) { ...
® Actions: Programmers }

® Sensing: Programmers

® Thinking: Designers

Thinking: Primary Challenge

® A mess of conditionals if (sense;) {
if (sensey) { ...

® “Spaghetti” code
® Difficult to modify

® Abstraction requirements:
® FEasy to visualize models

® Mirror “cognitive thought”

® Want to separate talent

® Sensing: Programmers

® Thinking: Designers

® Actions: Programmers }

Rule-Based Al

If X'is true, Thendo Y Three-Step Process

® Match

® For each rule, check if
® Return a/l matches

Updated

Matching ® Resolve
State

Rules
® (Can only use one rule

® Use metarule to pick one
P —
Selected ® Act

Rule
® Do then-part

Rule-Based Al

If X'1s true, Thendo ¥

® Thinking: Providing a list of several rules
® But what happens if there 1s more than one rule?

® Which rule do we choose?

Rule-Based Al

| Sensing | | Acting |

If X'1s true, Thendo ¥

® Thinking: Providing a list of several rules
® But what happens if there 1s more than one rule?

® Which rule do we choose?

Simplicity of Rule-Based Al

Conflict Resolution

® Often resolve by order
® Each rule has a priority
® Higher priorities go first

® “Flattening” conditionals

® Problems:

® Predictable
Same events = same rules

® Total order

Sometimes no preference

® Performance
On average, go far down list

:1f
:1f
:1f
:1f
:1f
:1f
:1f

event,
event,
event;
event,
events
event,

event,

then
then
then
then
then
then

then

act,
act,
acty
acty
acts
acty

act;

Conflict Resolution

Specificity:

® Rule w/ most “components”™

Random:
® Select randomly from list

® May “weight” probabilities
Refractory Inhibition:

® Do not repeat recent rule

® (Can combine with ordering

Data Recency:

® Select most recent update

R;:1if A,B,C, then

R,:if A,B,D, then

Impulses

® (Correspond to certain events
® Global: not tied to NPC

® Must also have duration

® Used to reorder rules
® Event makes rule important
® Temporarily up the priority

® Restore when event 1s over

® Preferred conflict resolution
® Simple but flexible
® Used in Halo 3 Al.

:1f
:1f
:1f
:1f
:1f
:1f
:1f

event,
event,
event;
event,
events
event,

event,

then
then
then
then
then
then

then

act,
act,
acty
acty
acts
acty

act;

Impulses

® (Correspond to certain events
® Global: not tied to NPC

® Must also have duration

® Used to reorder rules
® Event makes rule important
® Temporarily up the priority

® Restore when event 1s over

® Preferred conflict resolution
® Simple but flexible
® Used in Halo 3 Al.

:1f
:1f
cif
:1f
:1f
:1f
:1f

event; then act,
event, then act,
event; then act5<h
event; then act;

event, then act, /
eventy, then actg

event; then act,

Rule-Based Al: Performance

® Matching = sensing
® [f-part is expensive

® Test every condition

® Many unmatched rules

Updated
State

Matching
Rules

® Improving performance

® (Optimize sensing
(make i1f-part cheap)

—

Selected
Rule

® | imit number of rules

® (ther solutions?

® Most games limit rules

® Reason for state machines

Rule-Based Al: Performance

® Matching = sensing

® [f-part is expensive
® Test every condition

® Many unmatched rules

Updated
State

Matching
Rules

® Improving performance

® (Optimize sensing
(make i1f-part cheap)

—

Selected
Rule

® | imit number of rules

® (ther solutions?

® Most games limit rules

® Reason for state machines

Making the Rules Manageable

S

@ Add/Change Tile -

Making the Rules Manageable

Limited number of
rules per page

" Kodu Game Lab (10.35.0, Gener:

@ DeleteTile | |
W enter Add/Ch@ i] B
| (B3] Next Pag E |

Prev Page ‘.. keyboard !
] \! 2

Switching page
1S an action

Finite State Machines

Events

¢ E=Enemy Seen
® S=Sound Heard

® D=Die

Slide courtesy of John Laird

Finite State Machines

Only check rules Events

for outgoing edges Atack

¢ E=Enemy Seen

® S=Sound Heard

® D=Die

Slide courtesy of John Laird

Implementation: Model-View-Controller

® Games have thin models
® Methods = get/set/update

® Controllers are heavyweight

® Al is a controller

® Uniform process over NPCs

® But behavior 1s personal
® Diff. NPCs = diff. behavior

® Do not want unique code

® What can we do?

® Data-Driven Design

Implementation: Model-View-Controller

® Actions go in the model
® Lightweight updates

® Specific to model or role

® (Controller 1s framework for
general sensing, thinking

® Standard FSM engine
® Or FSM alternatives (later)

® Process stored in a model
® Represent thinking as graph

® Controller processes graph

Al
Controller

wander

chase

attack

spawn

An Aside: Animations

® Al may need many actions
Landing Animation

2
ar) oy
<5 S =

® Run, jump, duck, slide

@ ﬁ ﬁ ® Fire weapons, cast spells

® Fidget while idling

® Want animations for all
® s loop appropriate for each?

® How do we transition?

ﬁ ﬁ ﬁ ﬁ ﬁ ® Jdea: shared boundaries
¢ 2
4 ® End of loop = start of another
Idling Animation ® Treat like advancing a frame

An Aside: Animations

® Al may need many actions
Landing Animation ® Run, jump, duck, slide

@ ﬁ ® Fire weapons, cast spells
® Fidget while idling

[[Not a Loop] ® Want animations for all

® s loop appropriate for each?

® How do we transition?

ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ® Jdea: shared boundaries
® End of loop = start of another
Idling Animation ® Treat like advancing a frame

An Aside: Animations

® Al may need many actions
Landing Animation ® Run, jump, duck, slide

% ﬁ ﬁ ﬁ ® Fire weapons, cast spells
il ® Fidget while idling

[[Transition]

® Want animations for all

® s loop appropriate for each?

® How do we transition?

ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ® Idea: shared boundaries
® End of loop = start of another
Idling Animation ® Treat like advancing a frame

Animation and State Machines

® Jdea: Each sequence a state
® Do sequence while in state

® Transition when at end

® Only loop if loop in graph
® A graph edge means...

® Boundaries match up

® Transition is allowable

® Similar to data driven Al
® (reated by the designer

® Implemented by programmer

® Modern engines have tools

Animation and State Machines

® Idea: Each sequence a state Continuing]

® Do sequence while in state Action

® Transition when at end

® Only loop if loop in graph

® A graph edge means...

® Boundaries match up

® Transition is allowable

® Similar to data driven Al
® (reated by the designer
® Implemented by programmer

® Modern engines have tools

Complex Example: Jumping

stand2crouch

Complex Example: Jumping

Jump Press]

4 Jump Release]

stand2crouch

r

takeoft

[{ Jump Release

>

[[Near Ground

i

Complex Example: Jumping

4 e
Transition state
needed to align

. the sequences

stand2crouch

crouch

LibGDX Interfaces

StateMachine<E> State<E>
¢ Attached to an entity ® Not attached to an entity
® Set the entity in constructor ® StateMachine sets state

® New entity, new state machine * StateMachine passes entity

® Must implement methods
update()
changeState(State<A> state)
revertToPreviousState()
getCurrentState()
isInState(State<A> state)

® Must implement methods

® enter(E entity)

When machine enters state
® cxit(E entity)

When machine enters state
® ypdate(E entity)

When machine stays in state

® DefaultStateMachine provided

LibGDX Interfaces

StateMachine<E> State<E>

® Not attached to an entity

Updates current state.
Does not transition! |md Transition logic

mplement meth external to the
update() state machine.

changeState(State<A> state)
revertToPreviousState()
getCurrentState()
isInState(State<A> state)

achine sets state

chine passes entity

lement methods

entity)

When machine enters state
® cxit(E entity)

When machine enters state
® ypdate(E entity)

When machine stays in state

® DefaultStateMachine provided

Problems with FSMs

Events

¢ E=Enemy Seen
® S=Sound Heard

® D=Die

No edge from Attack to Chase

Slide courtesy of John Laird

Problems with FSMs

Events

¢ E=Enemy Seen
® S=Sound Heard

® D=Die

Requires a redundant state

Slide courtesy of John Laird

Problems with FSMs

+S
Attack-E ey 2 Attack-ES

Wander-L

Slide courtesy of John Laird

Events
® E=Enemy Seen
® S=Sound Heard
® D=Die
® L=Low Health

Problems with FSMs

+S Events
Attack-E ey 2 Attack-ES -
E,-S,D, | [PHESSSES g D | .
=S @ ® E=Enemy Seen

AR
E-S.DL £ A P&X
+L\&L' " \. =Low Health

S

gt 8% v Q
o
2

\IRT =
g Chase
-E,S,-D,-L .
(+S Adding a new feature can double states

Slide courtesy of John Laird

Wandeg
_Ez v S:“

An Observation

® Each state has a set of global attributes
® Different attributes may have same actions

® Reason for redundant behavior

® Currently just cared about attributes

® Not really using the full power of a FSM
® Why don’t we just check attributes directly?

® Attribute-based selection: decision trees

Decision Trees

® Thinking encoded as a tree

® Attributes = tree nodes A
® Left = true, right = false .x. 66

® Actions = leaves (reach from the root)

® (Classify by descending from root to a leaf
® Start with the test at the root
® Descend the branch according to the test

® Repeat until a leaf 1s reached

Decision Tree Example

(St \
A

A ;@E
=

Slide courtesy of John Laird

t

it
Spawn

Decision Tree Example

[Start Here k \% Single Al Rule]

f

\@ /@
@-@@

t f

yrd

Action

Slide courtesy of John Laird

FSMs vs. Decision Trees

Finite State Machines Decision Trees
® Not limited to attributes ® Only attribute selection
® Allow “arbitrary” behavior ® Much more manageable
® Explode in size very fast ® Mixes w/ machine learning

Behavior Trees

® Part rule-based ® Node is a list of actions
® Part decision tree ® Select action using rules

® Freedom of FSM (almost) ® Action leads to subactions

Behavior Trees

Ordered

Rules
g W,

L Ordered Rules with Actions J

Behavior Trees

Ordered

- Rules)

Impulses

Reorder
o 4

L Ordered Rules with Actions J

LibGDX Behavior Trees

® Base actions are defined at the leaves

® Internal nodes to select or even combine tasks

>_ Composite
Task

Task Task Task Task Task

Basic Task

LibGDX Behavior Trees

® Base actions are defined at the leaves

® Internal nodes to select or even combine tasks

Use classes]

\ in LibGDX
(sub)Classes
/\ you create

Task Task Task Task Task :
4

Can be either
condition (1f) or
__an action (then)

LibGDX Rules

® Selector rules

® Tests each subtask for success

® Tasks are tried independently

Subtask \ Subtask \

® (Chooses first one to succeed

® Sequence rules

® Tests each subtask for success
® Tasks are tried in order

Subtask \ Subtask \

® Does all if succees; else none

® Parallel rules
® Tests each subtask for success
® Tasks are tried simultaneously

Subtask \ Subtask \ ® Does all if succees; else none

This is the Wrong Model

® (Conflates actions/selection

® Want way to pick subtask

Subtask \ Subtask \

® Distinct from performing it

® Actions must be instant
® (Can switch each frame

® Action unaware of switch

Subtask \ Subtask \

® No way to suspend/recover

® Have anew API in 4152

® Still being tested in class
SubtaSk SubtaSk ® Bring to 3152 eventually

Summary

® Character Al 1s a software engineering problem

® Sense-think-act aids code reuse and ease of design

® [cast standardized aspect of game architecture

® Rule-based Al is the foundation for all character Al

® Simplified variation of sense-think-act

® Alternative systems made to limit number of rules

® Games use graphical models for data-driven Al
® Controller outside of NPC model processes Al

® Graph stored in NPC model tailors Al to individuals

