
gamedesigninitiative
at cornell university

the

Box2D 
Physics



Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)
� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?



Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)
� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?

Class Body

Class Fixture



� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

Body in Box2D

Body



� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

Body in Box2D

Linear
Velocity

Position

Angular
Velocity



� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

� Kinematic is rarely useful
� Limited collision detection
� Only collides w/ dynamics
� Does not bounce or react

� Application: Bullets
� Light, fast-moving objects
� Should not bounce

Body in Box2D

Looks like
last lecture



Forces

� Instantaneous push
� To be applied over time
� Gradually accelerates
� Momentum if sustained

Forces vs. Impulses

Impulses

� Push with duration
� To be applied in one frame
� Quickly accelerates
� Immediate momentum

ImpulseImpulse = Force x Time



Forces

� Instantaneous push
� To be applied over time
� Gradually accelerates
� Momentum if sustained

Forces vs. Impulses

Impulses

� Push with duration
� To be applied in one frame
� Quickly accelerates
� Immediate momentum

ImpulseImpulse = Force x 1 Sec

in Box2D



Force and Acceleration

� What do we need to compute motion?
� Dp = vDt = v0Dt + ½a(Dt)2 = v0Dt + ½(F/m)(Dt)2 

� So depends on Force, current velocity and mass

� Where does that mass come from?
� Class Body has a getter, but no setter!
� It comes from the Fixture class
� Fixture gives volume to body

� Will revisit this later with collisions



Force and Acceleration

� What do we need to compute motion?
� Dp = vDt = v0Dt + ½a(Dt)2 = v0Dt + ½(F/m)(Dt)2 

� So depends on Force, current velocity and mass

� Where does that mass come from?
� Class Body has a getter, but no setter!
� It comes from the Fixture class
� Fixture gives volume to body

� Will revisit this later with collisions



� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

Four Ways to Move a Dynamic Body

ForceTorque



� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

� Great for joints, complex shapes
� Laggy response to user input
� A bit hard to control

� Great for joints, complex shapes
� Good response to user input
� Extremely hard to control

� Bad for joints, complex shapes
� Excellent response to user input
� Very easy to control

� Completely ignores physics!
� Very easy to control

Four Ways to Move a Dynamic Body



Example: Box2D Demo



Example: Box2D Demo

Controls:

� WASD for linear force

� Left-right arrows to rotate

� 9 or 0 to change controls



� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

Four Ways to Move a Dynamic Body

Must Cap Velocity



Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

}



Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

} Multiple times to 
improve accuracy



Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

} Multiple times to 
improve accuracy

Only before 
first iteration!



Shape

� Stores the object geometry
� Boxes, circles or polygons
� Must be convex!

� Has own coordinate space
� Associated body is origin
� Unaffected if body moved
� Cannot be resized later

� Also stores object density
� Mass is area x density

Collision Objects in Box 2D

Fixture

� Attaches a shape to a body
� Fixture has only one body
� Bodies have many fixtures

� Cannot change the shape
� Must destroy old fixture
� Must make a new fixture

� Has other properties
� Friction: stickiness
� Restitution: bounciness



// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

Making a Box2D Physics Object



// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

Making a Box2D Physics Object

Optimized Allocation

Normal Allocation



// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);

Making a Box2D Physics Object



// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);

Making a Box2D Physics Object

Other shapes possible

Also set friction and 
restitution parameters

Reason for separating
Fixture & Body classes



// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);

Making a Box2D Physics Object



Observations on Fixture Parameters

� Density can be anything non-zero
� The higher the density the higher the mass
� Heavier objects are harder to move

� Friction should be within 0 to 1
� Can be larger, but effects are unpredictable
� Affects everything, even manual velocity control

� Restitution should be within 0 to 1
� A value of 0 means no bounciness at all
� Unpredictable with manual velocity control



Example: Box2D Demo



Example: Box2D Demo

Controls:

� 1 or 2 to change density

� 3 or 4 to change friction

� 5 or 6 to change restitution

� 7 or 8 to change shape



� Size is not in pixels
� 1 Box2D unit = 1 meter
� Also 1 density = 1 kg/m2

� Drawing scale in Lab 4

� This is rescalable
� Could say 1 unit = 10 m
� But must be consistent

� Box2d likes units near 1
� Best if objects same size
� Adjust scale so 1 default

A Word on Units

60 
pixels

1.5 
B2d units

60 
B2d units



� Do not try to learn boundary
� Image recognition is hard

� Hull will have many sides

� Have artists draw the shape
� Cover shape with triangles
� But can ignore interiors

� Keep # sides small!

� Store shape in another file
� Do not ruin the art!
� Need coordinates as data

How Do We Find the Shape?



character.jpg

Data-Driven Design

character.shape

120,2
130,4
125,50
150,65
160,100
150,110
125,80
140,200
130,200
120,110
…



Custom Collisions: ContactListeners

� Special listener attached to world object
� Reacts to any two fixtures that collide
� Allow you to override collision behavior
� Or you can augment collision behavior

� Two primary methods in interface
� beginContact: When objects first collide
� endContact: When objects no longer collide

� Example: Color changing in Box2D demo



Collision is About Fixtures!

� Capsule obstacle is two circles and rectangle
� Allows smooth motion while walking
� Feet do not get hung up on surfaces

� But may register multiple collisions!



Collision Filtering

� FixtureDef has a Filter attribute
� categoryBits: Defines what can collide with it
� maskBits: Defines what it can collide with
� groupIndex: Collision group (overrides bits)

� Example:
� Fixture A category x001, Fixture B category x010
� Mask x101 or x001 only collides with A
� Mask x011 collides with both A and B



Collision Filtering

� FixtureDef has a Filter attribute
� categoryBits: Defines what can collide with it
� maskBits: Defines what it can collide with
� groupIndex: Collision group (overrides bits)

� Example:
� Fixture A category x001, Fixture B category x010
� Mask x101 or x001 only collides with A
� Mask x011 collides with both A and BFiltering means is never detected!



How about Sort-of-Filtering?

� Want a non-sensor object where
� We always detect the collision
� But sometimes ignore the restitution

� Method beginContact has a Contact parameter
� Manages the physics while it resolves collision
� Can call the method contact.isEnabled(false)
� Turns off collision; endContact is never called

� See tutorials for “anatomy of a collision”
� https://www.iforce2d.net/b2dtut/collision-anatomy



Recall: Tunneling

� Small objects tunnel more easily

� Fast-moving objects tunnel more easily



Possible Solutions to Tunnelling

� Minimum size requirement?
� Fast objects still tunnel

� Maximum speed limit?
� Speed limit is a function of object size
� So small & fast objects (bullets) not allowed

� Smaller time step?
� Essentially the same as a speed limit

� All of these solutions are inadequate



� Bounds contain motion
� “Cylinder” w/ shape at ends
� Object always in bounds
� Convex if shape is convex

� New collision checking
� Put shapes at start and end
� Create swept shape for pair
� Check for collisions

� Can have false positives
� Swept shape ignores time

Swept Shapes



� Bounds contain motion
� “Cylinder” w/ shape at ends
� Object always in bounds
� Convex if shape is convex

� New collision checking
� Put shapes at start and end
� Create swept shape for pair
� Check for collisions

� Can have false positives
� Swept shape ignores time

Swept Shapes



� False positives happen if:
� Two objects are moving
� Swept shapes intersect at 

different intersection times

� What if only one moving?
� Swept intersects stationary
� So no false positives

� Change reference frames
� Keep one shape still
� Move other in new coords

Swept Shapes & Relative Coordinates

Inertial Frame



Red Frame

� False positives happen if:
� Two objects are moving
� Swept shapes intersect at 

different intersection times

� What if only one moving?
� Swept intersects stationary
� So no false positives

� Change reference frames
� Keep one shape still
� Move other in new coords

Swept Shapes & Relative Coordinates

Blue Frame



Red Frame

� False positives happen if:
� Two objects are moving
� Swept shapes intersect at 

different intersection times

� What if only one moving?
� Swept intersects stationary
� So no false positives

� Change reference frames
� Keep one shape still
� Move other in new coords

Swept Shapes & Relative Coordinates

Blue Frame

How “Bullets” are handled

Expensive!



� Relative coordinates no help
� Cannot use swept shapes

� Actual solution is hard!

� But not so bad…
� Angular tunneling looks ok

� Speed limits are feasible

� Do linear approximations

� Many physics systems 
never handle this well

Rotations Suck



� Method rayCast in world
� Give it start, end of ray
� Also a RayCastCallback
� Executed when call step

� Invoked on all collisions
� Not just the first on
� Does not return in order!
� This is for optimization 

� Sight-cones = many rays

More Collisions: RayCasting



The RayCastCallback Interface

float reportRayFixture(Fixture fixture,  // Fixture found
Vector2 point,     // Collision point
Vector2 nom,      // Collision normal
float fraction      // Fraction of ray
)

� Fraction is how far along ray (0 = start, 1 = end)
� First collision is one with lowest fraction
� But be prepared for larger fractions first

� Return value is optimization to limit search
� Ignores collisions with fraction later than return



The RayCastCallback Interface

float reportRayFixture(Fixture fixture,  // Fixture found
Vector2 point,     // Collision point
Vector2 nom,      // Collision normal
float fraction      // Fraction of ray
)

� Fraction is how far along ray (0 = start, 1 = end)
� First collision is one with lowest fraction
� But be prepared for larger fractions first

� Return value is optimization to limit search
� Ignores collisions with fraction later than return

Allowed fraction 
for future matches



� Bounding Box queries
� Find all fixtures in box
� Must be axis aligned
� Rotation not allowed

� Similar to raycasting
� Provide callback listener
� Call step method in world
� Prepare for many matches

� Application: selection
� See Ragdoll Demo

AABB Queries



� Joints connect bodies
� Anchors can be offset body
� Coordinates relative to body 

� Are affected by fixtures
� Fixtures prevent collisions
� Limit relative movement

� Must control with forces
� Manual velocity might 

violate constraints
� Use force or impulse

Some Words on Joints

Body

Anchor

Rigid

Rigid

Body
Anchor

Joint
(flexible)



Distance Joint

� Hard constraint

� Strong but very brittle

� Primary chain/rope joint

Sample Joint Types

Rope Joint

� Soft constraint

� Stretchy but very weak

� More for reinforcement



Revolute

� Joint binds at one point

� Both translate together

� But rotate independently

Sample Joint Types

Weld

� Joint binds at one point 

� Both translate together

� Both rotate together



Prismatic

� Joint binds with a “track”

� Both rotate together

� But translate along track

Sample Joint Types

Pulley

� Joint binds through portals

� Pulling one raises the other

� Distance w/ “teleportation”



Summary

� Box2d support motion and collisions
� Body class provides the motion
� Fixture, Shape classes are for collisions

� Multiple ways to control a physics object
� Can apply forces or manually control velocity
� Joint constraints work best with forces

� Collisions are managed by callback functions
� Invoked once you call the world step method
� Collisions are processed per fixture, not per body


