the . « e e g
gamedesigninitiative
at cornell university
]

Physics
iIn Games

The Pedagogical Problem

® Physics simulation 1s a very complex topic
® No way I can address this 1n a few lectures

® Could spend an entire course talking about it
® CS 5643: Physically Based Animation

® This 1s why we have physics engines
® [ibraries that handle most of the dirty work

® But you have to understand how they work
® Examples: Box2D, Bullet, PhysX

Approaching the Problem

® Want to start with the problem description
® Squirrel Eiserloh’s Problem Overview slides

® http:.//www.essentialmath.com/tutorial.htm

® Will help you understand the Engine APIs

® Understand the limitations of physics engines

® [earn where to go for other solutions

® Will cover Box2D API next time 1n depth

http://www.essentialmath.com/tutorial.htm

Physics in Games

® Moving objects about the screen

® Kinematics: Motion 1ignoring external forces

(Only consider position, velocity, acceleration)

® Dynamics: The effect of forces on the screen

® Collisions between objects
® (Collision Detection: Did a collision occur?

® (Collision Resolution: What do we do?

Motion: Modeling Objects

® Typically ignore geometry
® Don’t worry about shape

® Only needed for collisions

® Every object is a point
® (entroid: average of points
® Also called: center of mass

® Same if density uniform

® Use rigid body if needed
® Multiple points together

® Moving one moves them all

Motion: Modeling Objects

® Typically ignore geometry
® Don’t worry about shape

® Only needed for collisions

® Every object is a point
® (entroid: average of points
® Also called: center of mass

® Same if density uniform

® Use rigid body if needed
® Multiple points together

® Moving one moves them all

Motion: Modeling Objects

® Typically ignore geometry
® Don’t worry about shape

® Only needed for collisions

Rigid Body
® Every object is a point

® (entroid: average of points

® Also called: center of mass

® Same if density uniform

® Use rigid body if needed
® Multiple points together

® Moving one moves them all

Time-Stepped Simulation

® Physics 1s time-stepped
® Assume velocity 1s constant
(or the acceleration 1s)

® Compute the position

® Move for next frame Q/

® Movement is very linear
® Piecewise approximations

® Remember your calculus

® Smooth = smaller steps

® More frames a second?

Time-Stepped Simulation

® Physics 1s time-stepped
® Assume velocity 1s constant
(or the acceleration 1s)

® Compute the position

® Move for next frame /.\

® Movement is very linear
® Piecewise approximations

® Remember your calculus

® Smooth = smaller steps

® More frames a second?

Time-Stepped Simulation

® Physics 1s time-stepped
® Assume velocity 1s constant
(or the acceleration 1s)

® Compute the position

® Move for next frame — \\

® Movement is very linear
® Piecewise approximations

® Remember your calculus

® Smooth = smaller steps

® More frames a second?

Time-Stepped Simulation

® Physics 1s time-stepped
® Assume velocity 1s constant
(or the acceleration 1s)

® Compute the position
-
® Move for next frame —

® Movement is very linear
® Piecewise approximations

® Remember your calculus

® Smooth = smaller steps

® More frames a second?

Time-Stepped Simulation

® Physics 1s time-stepped
® Assume velocity 1s constant
(or the acceleration 1s)

® Compute the position

-
® Move for next frame — \
® Movement is very linear
® Piecewise approximations
® Remember your calculus

® Smooth = smaller steps

® More frames a second?

Time-Stepped Simulation

® Physics 1s time-stepped
® Assume velocity 1s constant
(or the acceleration 1s)

® Compute the position

® Move for next frame

® Movement is very linear
® Piecewise approximations

® Remember your calculus

® Smooth = smaller steps

® More frames a second?

Kinematics

® Goal: determine an object position p at time ¢

® Typically know it from a previous time

® Assume: constant velocity v
® p(t+Ar) = p(t) + vAt
® Or Ap = p(t+At)-p(t) = vAt <€

® Alternatively: constant acceleration a Formulas
1
o v(t+Af) =v(f) +aAt (or Av = aA?) cOmmonty

1n use
® p(t+AY) = p(f) + v(t)At + Yaa(Af)?
® Or Ap = voAt + Yea(Af)? <

Kinematics

® Goal: determine an object position p at time ¢

® Typically know it from a previous time

® Assume: constant velocity v
® p(t+Ar) = p(t) + vAt

. \
High Seho© .
° Al JEENCNT acceleration a Formulas
1
® y(t+Ar) =v(t) + aAt (or Av = aAr) cOmmOnLy
1n uScC

® p(t+AY) = p(f) + v(t)At + Yaa(Af)?
® Or Ap = voAt + Yea(Af)? <

Linear Dynamics

® Forces affect movement I_@m@_.i
af =kax

® Springs, joints, connections

AX
® Gravity, repulsion I‘@@EM)_'EJ

® Get velocity from forces v
® Compute current force F g/'F

® [’ constant entire frame

® Formulas:
Aa = F/m
Av = FAt/m

Ap = F(Af)*/m

Linear Dynamics

® Force: F(p,t)
® p: current position

® /. current time

® (Creates a vector field

® Movement should
follow field direction

® Update formulas
® a.=F(p,iAt)/m
® Vi = VitaAt

® D =p; T VAL

S
A
SN
oSS
o

"N TR Ty Ty e

L~

— B

1

—

T

F

— e

e e

e ™

el L T

- - S T T Tl

T %

h e e e e

.

»

B Sl o o

- - - el el —

— e — = - -

- - - el el —

— e - - - -

h e e e e e

-

»

- g e

h e m e e e

-

»

- = g e

- - S T T Tl

A}

T

’

- A

L s e

T 1

F

P L T

t
t
|

;
f
'

P AV
e
4

Linear Dynamics

® Force: F(p,t)
® p: current position

® /. current time

® (Creates a vector field

® Movement should
follow field direction

® Update formulas
® a.=F(p,iAt)/m
® Vi = VitaAt

® D =p; T VAL

S
A
SN
oSS
o

f
!
!
!
’

L~

—

S e, e il -l » ' - - - e e e g

e e e - - — —

-— - = -~ - - -

- ™ e~ -l » T - - - T e e g

- = = = b a4 2 T A m e . -y —y —

—— e o~ o o A P T N A e ., e T

T Y Y N TR Ty Ty Tea

PO Y Y N

t
t
|

PV N S
e
4

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp™ ()
® Euler’s method: ¢
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp™ ()
® Euler’s method:
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp~ ()
® Euler’s method:
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp™ ()
® Euler’s method:
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp™ ()
® Euler’s method: \4\1
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp™ ()
® Euler’s method: \J
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp~ ()

® Euler’s method:
® a,=F(p,iAt)/m N\
® Vi = Vvita,At 1
® pir1 =p;i T VAL

® But heavily optimized

Physics Engines are DE Solvers

® Differential Equation
® F(p,t) =m a(t)
® Flp,y)=mp™ ()
® Euler’s method:
® a,=F(p,iAt)/m
® Vi = Vvita,At

® pi1 =p; T VAL

® But heavily optimized

Problem with DE Solvers

® Errors accumulate
® Side effect of techniques

® Stepwise approximations

® Major problem with orbits
® Move along tangent vector
® Vector takes out of orbit

® (Gets worse over time

® Must constrain behavior

® Keep movement in orbit

Dealing with Error Creep

® (Classic solution: reduce the time step At
® Up the frame rate (not necessarily good)
® Perform more than one step per frame
® Each Euler step 1s called an iferation

® Multiple iterations per frame

® [et & be the length of the frame { At = h/n]
® [ct n be the number of iterations

® Typically a parameter in your physics engine

Dealing with Error Creep

® (Classic solution: reduce the time step At
® Up the frame rate (not necessarily good)
® Perform more than one step per fraz=—sg

® Typically a parameter in your physics engine

Problem with DE Solvers

® Errors accumulate
® Side effect of techniques

® Stepwise approximations

® Major problem with orbits
® Move along tangent vector
® Vector takes out of orbit

® (Gets worse over time

® Must constrain behavior

® Keep movement in orbit

Constraint Solvers

® Limit object movement Hard Constraint
® Pos must satisfy constraint o |
® (Correct position if does not \ ‘\ ,,"
¢ Example: Distance Q
® Hard: Dist must be exact 77
® . . o
Soft: Dist must be no more Soft Constr alnt\
® Other constraints R \
® (Contact: non-penetration \ ‘\‘ ,."
® Restitution: bouncing A N y

® Friction: sliding, sticking S (O

Constraint Solvers

® Limit object movement Hard Constraint
® Pos must satisfy constraint o v
® Correct position if does not \ 5 ,."

Soft Constraint
® Other constraints
® (Contact: non-penetration '\‘ .\\ ,."

® Restitution: bouncing A Y J

® Friction: sliding, sticking IR (O

Challenge: Interconnected Constraints

® Not hard if one object \

® Just move it and correct

® How about relationships?

® Correct an object

~
S

® But 1t constrained another

® So have to correct 1t and...

S mmm=

® When does this happen?

® Ropes, chains

® Box stacking

Challenge: Interconnected Constraints

® Not hard if one object

® Just move 1t and correct

® How about relationships?
® Correct an object

® But 1t constrained another

Joints Fall Apart!

® So have to correct 1t and...

® When does this happen?
® Ropes, chains

® Box stacking

Challenge: Interconnected Constraints

® Not hard if one object

® Just move 1t and correct

® How about relationships?

Joints Fall Apart!

® (Correct an object
® But 1t constrained another

® So have to correct 1t and... (5

® When does this happen? \

® Ropes, chains .
. Box2d 1s good, but not perfect
® Box stacking

Error Accumulation: Energy

® Want energy conserved

® Energy loss undesirable

® Energy gain 1s evil

® Simulations explode!

® Not always possible

® Error accumulation!

® Need ad hoc solutions
® (Clamping (max values)

® Manual dampening

Error Accumulation: Energy

® Want energy conserved

® Energy loss undesirable

® Energy gain is evil

® Simulations exnlode!

8 High Energy 1s

where joints fail

® Need ad hoc solutions
® (Clamping (max values)

® Manual dampening

Kinematics vs. Dynamics

Kinematics Dynamics
® Advantages ® Advantages
® Very simple to use ® Complex physics
® Non-calculus physics ® Non-rigid bodies
® Disadvantages ® Disadvantages
® Only simple physics ® Beyond scope of course
® All bodies are rigid ® Need a physics engine

® Old school games ® Neo-retro games

Physics in Games

® Moving objects about the screen

® Kinematics: Motion 1ignoring external forces

(Only consider position, velocity, acceleration)

® Dynamics: The effect of forces on the screen

® Collisions between objects
® (Collision Detection: Did a collision occur?

® (Collision Resolution: What do we do?

Collisions and Geometry

® (Collisions need geometry s

® Points are not enough

® Find where objects meet

® Often use convex shapes

® Lines always remain inside

® [f not convex, 1S concave

® What if 1s not convex?

® Break into components

® Triangles always convex!

Collisions and Geometry

® (Collisions need geometry -

® Points are not enough

® Find where objects meet

Convex

® Often use convex shapes
® Lines always remain inside

® [f not convex, 1S concave '

® What if 1s not convex?

® Break into components /

® Triangles always convex!

Concave

Recall: Triangles in Computer Graphics

® Everything made of triangles
® Mathematically “nice”
® Hardware support (GPUs)

® Specify with three vertices

® (Coordinates of corners
(4,3)

® Composite for complex shapes
® Array of vertex objects

® Each 3 vertices = triangle

Recall: Triangles in Computer Graphics

® Everything made of triangles

® Guaranteed to be convex
® Hardware support (GPUs)

® Specify with three vertices

® (Coordinates of corners
(4,3)

® Composite for complex shapes
® Array of vertex objects

® Each 3 vertices = triangle

Collisions and Geometry

® (Collisions need geometry -

® Points are not enough

® Find where objects meet

Convex

® Often use convex shapes
® Lines always remain inside

® [f not convex, 1S concave '

® What if 1s not convex?

Coacrve

® Break into components

® Triangles always convex!

Collision Types

® Inelastic Collisions
® No energy preserved

® Stop in place (v=10)

® “Back-out” so no overlap

® Very easy to implement

® FKElastic Collisions

® 100% energy preserved
® Think billiard balls

® (lassic physics problem

Something In-Between?

® Partially Elastic
® x% energy preserved
® Different each object

® [.ike elastic, but harder

® Issue: object “material”

® What 1s object made of?
® Example: Rubber? Steel?

® Another parameter!

® Technical prototype?

Collision Restitution: Circles

® Single point of contact!
® Energy transferred at point

® Not true in complex shapes

® Use relative coordinates

® Point of contact is origin

® Perpendicular component:
Line through origin, center

® Parallel component:
Axis of collision “surface”

parallel component

® Reverse object motion on
the perpendicular comp

Collision Restitution b: Circles

® Single point of contact!
® Energy transferred at point

® Not true in complex shapes

® Use relative coordinates
® Point of contact is origin

® Perpendicular component:
Line through origin, center

® Parallel component:
Axis of collision “surface”

® Exchange energy on parallel component
. perpendicular component
the perpendicular comp

Issues with Collisions: Tunneling

® Games act like flip-books

® Sequence of snapshots

® (ollisions mid-snapshot?

® Could miss the collision OOQ QOOO.
O O
® Example of false negative ® O
® This 1s a serious problem O

® Players going where shouldn’t

® Players missing event trigger

We never actually see a snapshot
of the ball hitting the ground!

® (Cannot ignore tunneling

Tunneling

O

7

Tunneling: Observations

® Small objects tunnel more easily

Tunneling: Observations

® Small objects tunnel more easily

® Fast-moving objects tunnel more easily

More Complex Shapes

® Point of contact harder

® (Could just be a point
® Or it could be an edge

® Model w/ rigid bodies

® Break object into points
® (Connect with constraints
® Force at point of contact

® Transfers to other points

Surface
Contacts

® Needs constraint solver

Summary

® Object representation depends on goals
® For motion, represent object as a single point
® For collision, objects must have geometry

® Dynamics 1s use of forces to move objects

® Solve differential equations for position
® Need constraint solvers to overcome error creep

® (Collisions are broken up into two steps
® (Collision detection checks for intersections
® (Collision resolution 1s hard if not a circle

