
gamedesigninitiative
at cornell university

the

Physics 
in Games



The Pedagogical Problem

� Physics simulation is a very complex topic
� No way I can address this in a few lectures
� Could spend an entire course talking about it
� CS 5643: Physically Based Animation

� This is why we have physics engines
� Libraries that handle most of the dirty work
� But you have to understand how they work
� Examples: Box2D, Bullet, PhysX



Approaching the Problem

� Want to start with the problem description
� Squirrel Eiserloh’s Problem Overview slides

� http://www.essentialmath.com/tutorial.htm

� Will help you understand the Engine APIs
� Understand the limitations of physics engines
� Learn where to go for other solutions

� Will cover Box2D API next time in depth

http://www.essentialmath.com/tutorial.htm


Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)
� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?



Body

� Typically ignore geometry
� Don’t worry about shape
� Only needed for collisions

� Every object is a point
� Centroid: average of points
� Also called: center of mass
� Same if density uniform

� Use rigid body if needed
� Multiple points together
� Moving one moves them all

Motion: Modeling Objects



Body

� Typically ignore geometry
� Don’t worry about shape
� Only needed for collisions

� Every object is a point
� Centroid: average of points
� Also called: center of mass
� Same if density uniform

� Use rigid body if needed
� Multiple points together
� Moving one moves them all

Motion: Modeling Objects

Body



� Typically ignore geometry
� Don’t worry about shape
� Only needed for collisions

� Every object is a point
� Centroid: average of points
� Also called: center of mass
� Same if density uniform

� Use rigid body if needed
� Multiple points together
� Moving one moves them all

Motion: Modeling Objects

Rigid Body



� Physics is time-stepped
� Assume velocity is constant

(or the acceleration is)
� Compute the position
� Move for next frame

� Movement is very linear
� Piecewise approximations
� Remember your calculus

� Smooth = smaller steps
� More frames a second?

Time-Stepped Simulation



� Physics is time-stepped
� Assume velocity is constant

(or the acceleration is)
� Compute the position
� Move for next frame

� Movement is very linear
� Piecewise approximations
� Remember your calculus

� Smooth = smaller steps
� More frames a second?

Time-Stepped Simulation



� Physics is time-stepped
� Assume velocity is constant

(or the acceleration is)
� Compute the position
� Move for next frame

� Movement is very linear
� Piecewise approximations
� Remember your calculus

� Smooth = smaller steps
� More frames a second?

Time-Stepped Simulation



� Physics is time-stepped
� Assume velocity is constant

(or the acceleration is)
� Compute the position
� Move for next frame

� Movement is very linear
� Piecewise approximations
� Remember your calculus

� Smooth = smaller steps
� More frames a second?

Time-Stepped Simulation



� Physics is time-stepped
� Assume velocity is constant

(or the acceleration is)
� Compute the position
� Move for next frame

� Movement is very linear
� Piecewise approximations
� Remember your calculus

� Smooth = smaller steps
� More frames a second?

Time-Stepped Simulation



� Physics is time-stepped
� Assume velocity is constant

(or the acceleration is)
� Compute the position
� Move for next frame

� Movement is very linear
� Piecewise approximations
� Remember your calculus

� Smooth = smaller steps
� More frames a second?

Time-Stepped Simulation



Kinematics

� Goal: determine an object position p at time t
� Typically know it from a previous time

� Assume: constant velocity v
� p(t+Dt) = p(t) + vDt
� Or Dp = p(t+Dt)-p(t) = vDt

� Alternatively: constant acceleration a
� v(t+Dt) = v(t) + aDt (or Dv = aDt)
� p(t+Dt) = p(t) + v(t)Dt + ½a(Dt)2

� Or Dp = v0Dt + ½a(Dt)2

Formulas 
commonly 

in use



Kinematics

� Goal: determine an object position p at time t
� Typically know it from a previous time

� Assume: constant velocity v
� p(t+Dt) = p(t) + vDt
� Or Dp = p(t+Dt)-p(t) = vDt

� Alternatively: constant acceleration a
� v(t+Dt) = v(t) + aDt (or Dv = aDt)
� p(t+Dt) = p(t) + v(t)Dt + ½a(Dt)2

� Or Dp = v0Dt + ½a(Dt)2

Formulas 
commonly 

in use

High School Physics w/o Calculus



� Forces affect movement
� Springs, joints, connections
� Gravity, repulsion

� Get velocity from forces
� Compute current force F
� F constant entire frame
� Formulas:
Da = F/m
Dv = FDt/m
Dp = F(Dt)2/m

Linear Dynamics

F

v



� Force: F(p,t)
� p: current position
� t: current time

� Creates a vector field
� Movement should 

follow field direction

� Update formulas
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

Linear Dynamics



� Force: F(p,t)
� p: current position
� t: current time

� Creates a vector field
� Movement should 

follow field direction

� Update formulas
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

Linear Dynamics



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Differential Equation
� F(p,t) = m a(t)
� F(p,t) = m p´´(t)

� Euler’s method:
� ai = F(pi,iDt)/m
� vi+1 = vi+aiDt
� pi+1 = pi + viDt

� But heavily optimized

Physics Engines are DE Solvers



� Errors accumulate
� Side effect of techniques
� Stepwise approximations

� Major problem with orbits
� Move along tangent vector
� Vector takes out of orbit 
� Gets worse over time

� Must constrain behavior
� Keep movement in orbit

Problem with DE Solvers



Dealing with Error Creep

� Classic solution: reduce the time step Dt
� Up the frame rate (not necessarily good)
� Perform more than one step per frame
� Each Euler step is called an iteration

� Multiple iterations per frame
� Let h be the length of the frame
� Let n be the number of iterations

� Typically a parameter in your physics engine

Dt = h/n



Dealing with Error Creep

� Classic solution: reduce the time step Dt
� Up the frame rate (not necessarily good)
� Perform more than one step per frame
� Each Euler step is called an iteration

� Multiple iterations per frame
� Let h be the length of the frame
� Let n be the number of iterations

� Typically a parameter in your physics engine

Dt = h/n
Still does not solve orbit problem



� Errors accumulate
� Side effect of techniques
� Stepwise approximations

� Major problem with orbits
� Move along tangent vector
� Vector takes out of orbit 
� Gets worse over time

� Must constrain behavior
� Keep movement in orbit

Problem with DE Solvers



� Limit object movement
� Pos must satisfy constraint
� Correct position if does not

� Example: Distance
� Hard: Dist must be exact
� Soft: Dist must be no more

� Other constraints
� Contact: non-penetration 
� Restitution: bouncing
� Friction: sliding, sticking

Constraint Solvers

Hard Constraint

Soft Constraint



� Limit object movement
� Pos must satisfy constraint
� Correct position if does not

� Example: Distance
� Hard: Dist must be exact
� Soft: Dist must be no more

� Other constraints
� Contact: non-penetration 
� Restitution: bouncing
� Friction: sliding, sticking

Constraint Solvers

Hard Constraint

Soft ConstraintFocus of Lab 4



� Not hard if one object
� Just move it and correct

� How about relationships?
� Correct an object
� But it constrained another
� So have to correct it and…

� When does this happen?
� Ropes, chains 
� Box stacking

Challenge: Interconnected Constraints

l1

l2

l3

1m

2m

3m



� Not hard if one object
� Just move it and correct

� How about relationships?
� Correct an object
� But it constrained another
� So have to correct it and…

� When does this happen?
� Ropes, chains 
� Box stacking

Challenge: Interconnected Constraints

Joints Fall Apart!



� Not hard if one object
� Just move it and correct

� How about relationships?
� Correct an object
� But it constrained another
� So have to correct it and…

� When does this happen?
� Ropes, chains 
� Box stacking

Challenge: Interconnected Constraints

Joints Fall Apart!

Box2d is good, but not perfect



� Want energy conserved
� Energy loss undesirable
� Energy gain is evil
� Simulations explode!

� Not always possible
� Error accumulation!

� Need ad hoc solutions
� Clamping (max values)
� Manual dampening

Error Accumulation: Energy



� Want energy conserved
� Energy loss undesirable
� Energy gain is evil
� Simulations explode!

� Not always possible
� Error accumulation!

� Need ad hoc solutions
� Clamping (max values)
� Manual dampening

Error Accumulation: Energy

High Energy is 
where joints fail



Kinematics

� Advantages
� Very simple to use
� Non-calculus physics

� Disadvantages
� Only simple physics
� All bodies are rigid

� Old school games

Kinematics vs. Dynamics

Dynamics

� Advantages
� Complex physics
� Non-rigid bodies

� Disadvantages
� Beyond scope of course
� Need a physics engine

� Neo-retro games



Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)
� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?



� Collisions need geometry
� Points are not enough
� Find where objects meet

� Often use convex shapes
� Lines always remain inside
� If not convex, is concave

� What if is not convex?
� Break into components
� Triangles always convex!

Collisions and Geometry



� Collisions need geometry
� Points are not enough
� Find where objects meet

� Often use convex shapes
� Lines always remain inside
� If not convex, is concave

� What if is not convex?
� Break into components
� Triangles always convex!

Collisions and Geometry



Recall: Triangles in Computer Graphics

� Everything made of triangles
� Mathematically “nice”
� Hardware support (GPUs)

� Specify with three vertices
� Coordinates of corners

� Composite for complex shapes
� Array of vertex objects
� Each 3 vertices = triangle

(1,4)

(2,1)

(4,3)



Recall: Triangles in Computer Graphics

� Everything made of triangles
� Mathematically “nice”
� Hardware support (GPUs)

� Specify with three vertices
� Coordinates of corners

� Composite for complex shapes
� Array of vertex objects
� Each 3 vertices = triangle

(1,4)

(2,1)

(4,3)

Guaranteed to be convex



� Collisions need geometry
� Points are not enough
� Find where objects meet

� Often use convex shapes
� Lines always remain inside
� If not convex, is concave

� What if is not convex?
� Break into components
� Triangles always convex!

Collisions and Geometry



� Inelastic Collisions
� No energy preserved

� Stop in place (v = 0)

� “Back-out” so no overlap

� Very easy to implement

� Elastic Collisions
� 100% energy preserved

� Think billiard balls

� Classic physics problem

Collision Types



� Partially Elastic
� x% energy preserved
� Different each object
� Like elastic, but harder

� Issue: object “material”
� What is object made of?
� Example: Rubber? Steel? 

� Another parameter!
� Technical prototype?

Something In-Between?



� Single point of contact!
� Energy transferred at point
� Not true in complex shapes

� Use relative coordinates
� Point of contact is origin
� Perpendicular component:

Line through origin, center
� Parallel component:

Axis of collision “surface”

� Reverse object motion on 
the perpendicular comp

Collision Restitution: Circles



� Single point of contact!
� Energy transferred at point
� Not true in complex shapes

� Use relative coordinates
� Point of contact is origin
� Perpendicular component:

Line through origin, center
� Parallel component:

Axis of collision “surface”

� Exchange energy on 
the perpendicular comp

Collision Restitution b: Circles



� Games act like flip-books
� Sequence of snapshots
� Collisions mid-snapshot?
� Could miss the collision

� Example of false negative

� This is a serious problem
� Players going where shouldn’t
� Players missing event trigger
� Cannot ignore tunneling

Issues with Collisions: Tunneling



Tunneling



Tunneling: Observations

� Small objects tunnel more easily

� Fast-moving objects tunnel more easily



Tunneling: Observations

� Small objects tunnel more easily

� Fast-moving objects tunnel more easily



� Point of contact harder
� Could just be a point
� Or it could be an edge

� Model w/ rigid bodies
� Break object into points
� Connect with constraints
� Force at point of contact
� Transfers to other points

� Needs constraint solver

More Complex Shapes



Summary

� Object representation depends on goals
� For motion, represent object as a single point
� For collision, objects must have geometry

� Dynamics is use of forces to move objects
� Solve differential equations for position
� Need constraint solvers to overcome error creep

� Collisions are broken up into two steps
� Collision detection checks for intersections
� Collision resolution is hard if not a circle


