
gamedesigninitiative
at cornell university

the

Color and
Textures

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

Take Away For Today

� Image color and composition
� What is the RGB model for images?
� What does alpha represent?
� How does alpha composition work?

� Graphics primitives
� How do primitives differ from sprites?
� How does LibGDX support primitives?
� How do we combine sprites and primitives?

� Objects are on a stack
� Images are layered
� Drawn in order given

� Uses color composition
� Often just draws last image
� What about transparency?

� We need to understand…
� How color is represented
� How colors combine

Drawing Multiple Objects

� Humans are Trichromatic
� Any color a blend of three
� Images from only 3 colors

� Additive Color
� Each color has an intensity
� Blend by adding intensities

� Computer displays:
� Light for each “channel”
� Red, green and blue

� Aside: Subtractive Color
� Learned in primary school
� For pigments, not light

Color Representation

red green blue

[C
ornell C

S 465 Slides]

red blue

green

yellow cyan

magenta

white

Color Blending Example
red

blue green

Color Representation

� Each color has an intensity
� Measures amount of light of that color
� 0 = absent, 1 = maximum intensity

� Real numbers take up a lot of space
� Compact representation: one byte (0-255)
� As good as human eye can distinguish

� But graphics algorithms require [0,1]
� Use [0,255] for storage only
� intensity = bits/255.0
� bits = floor(intensity*255)

~0.00

0.01

0.04

0.09

0.16

0.25

0.36

0.49

0.64

0.81

1.0

0

255

128

Color Representation

� Intensity for three colors: 3 bytes or 24 bits

� Store as a 32 bit int; use bit ops to access
� red: 0x000000FF & integer
� green: 0x000000FF & (integer >> 8)
� blue: 0x000000FF & (integer >> 16)

� Most integers are actually 4 bytes; what to do?

01011010 00000010 00011111 01011010

#5AHTML Color 02 1F Not Supported

The Alpha Channel

� Only used in color composition

� Does not correspond to a physical light source
� Allows for transparency of overlapping objects
� Without it the colors are written atop another

without
and
with
alpha

[A
dobe Photoshop Sam

ples, C
S 465 Slides]

Color Composition

� Trivial example: Video crossfade
� Smooth transition from one scene to another.

� Note sums weight to 1.0
� No unexpected brightening or darkening
� No out-of-range results

� This is an example of linear interpolation

per pixel calculation

[C
hu

an
g

et
 a

l/
C

or
el

]

t = 0.0A B

rC = trA + (1� t)rB

gC = tgA + (1� t)gB

bC = tbA + (1� t)bB

Color Composition

� Trivial example: Video crossfade
� Smooth transition from one scene to another.

� Note sums weight to 1.0
� No unexpected brightening or darkening
� No out-of-range results

� This is an example of linear interpolation

per pixel calculation

[C
hu

an
g

et
 a

l/
C

or
el

]

t = 0.0t = 0.3A B

rC = trA + (1� t)rB

gC = tgA + (1� t)gB

bC = tbA + (1� t)bB

Color Composition

� Trivial example: Video crossfade
� Smooth transition from one scene to another.

� Note sums weight to 1.0
� No unexpected brightening or darkening
� No out-of-range results

� This is an example of linear interpolation

per pixel calculation

[C
hu

an
g

et
 a

l/
C

or
el

]

t = 0.0t = 0.3t = 0.6A B

rC = trA + (1� t)rB

gC = tgA + (1� t)gB

bC = tbA + (1� t)bB

Color Composition

� Trivial example: Video crossfade
� Smooth transition from one scene to another.

� Note sums weight to 1.0
� No unexpected brightening or darkening
� No out-of-range results

� This is an example of linear interpolation

per pixel calculation

[C
hu

an
g

et
 a

l/
C

or
el

]

t = 0.0t = 0.3t = 0.6t = 0.8A B

rC = trA + (1� t)rB

gC = tgA + (1� t)gB

bC = tbA + (1� t)bB

Color Composition

� Trivial example: Video crossfade
� Smooth transition from one scene to another.

� Note sums weight to 1.0
� No unexpected brightening or darkening
� No out-of-range results

� This is an example of linear interpolation

per pixel calculation

[C
hu

an
g

et
 a

l/
C

or
el

]

t = 0.0t = 0.3t = 0.6t = 0.8t = 1.0A B

rC = trA + (1� t)rB

gC = tgA + (1� t)gB

bC = tbA + (1� t)bB

Foreground and Background

� In many cases, just adding is not enough
� Want some elements in composite, not others
� Do not want transparency of crossfade

� How we compute new image varies with position.

� Need to store a tag indicating parts of interest

Use background

Use foreground

[C
hu

an
g

et
 a

l/
C

or
el

]

Binary Image Mask

� First idea: Store one bit per pixel
� Answers question “Is this pixel in foreground?”

� Does not work well near the edges

[C
hu

an
g

et
 a

l/
C

or
el

]
[C

or
ne

ll
PC

G
]

Binary Image Mask

� First idea: Store one bit per pixel
� Answers question “Is this pixel in foreground?”

� Does not work well near the edges

[C
hu

an
g

et
 a

l/
C

or
el

]
[C

or
ne

ll
PC

G
]

Binary Image Mask

� First idea: Store one bit per pixel
� Answers question “Is this pixel in foreground?”

� Does not work well near the edges

[C
hu

an
g

et
 a

l/
C

or
el

]
[C

or
ne

ll
PC

G
]

Partial Pixel Coverage

Problem: Boundary neither foreground nor background

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Partial Pixel Coverage

Solution: Interpolate on the border (Not exact, but fast)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.8 .2

.1

.4

.6

.6

.4

.2

.3.9

.8

.7

Alpha Compositing

� Formalized in 1984 by Porter & Duff

� Store fraction of pixel covered; call it a

� Clean implementation; 8 more bits makes 32
� 2 multiplies + 1 add for compositing

A covers
area a.

B shows through
area (1-a).

rC = ↵ArA + (1� ↵A)rB

gC = ↵AgA + (1� ↵A)gB

bC = ↵AbA + (1� ↵A)bB

C = A over B

Alpha Compositing Example

� Repeat previous with grey scale mask
� Edges are much better now

[C
hu

an
g

et
 a

l/
C

or
el

]
[C

or
ne

ll
PC

G
]

Alpha Compositing Example

� Repeat previous with grey scale mask
� Edges are much better now

[C
hu

an
g

et
 a

l/
C

or
el

]
[C

or
ne

ll
PC

G
]

Compositing in LibGDX

� spriteBatch.setBlendFunction(src, dst);

� General Formula: cC = (src)cA + (dst)cB

� Alpha Blending
� src = GL20.GL_SRC_ALPHA (aA)
� dst = GL20.GL_ONE_MINUS_SRC_ALPHA (1-aA)

� Colors may be premultiplied: c’ = ca
� src = GL20.GL_ONE
� dst = GL20.GL_ONE_MINUS_SRC_ALPHA

OpenGL Constants

Compositing in LibGDX

� spriteBatch.setBlendFunction(src, dst);

� General Formula: cC = (src)cA + (dst)cB

� Additive Blending (not premultiplied)
� src = GL20.GL_SRC_ALPHA
� dst = GL20.GL_ONE

� Opaque (no blending at all)
� src = GL20.GL_ONE
� dst = GL20.GL_ZERO

OpenGL Constants

� Sprites drawn by artist
� Distort with transforms
� Major changes require

new art from artist
� Inefficient collaboration

� Sprite-free graphics?
� Simple geometries
� Particle effects
� Dynamic shapes

The Problem with Sprites

Triangles in Computer Graphics

� Everything made of triangles
� Mathematically “nice”
� Hardware support (GPUs)

� Specify with three vertices
� Coordinates of corners

� Composite for complex shapes
� Array of vertex objects
� Each 3 vertices = triangle

(1,4)

(2,1)

(4,3)

Triangulation of Polygons

Triangulation of Polygons

Triangulation of Polygons

Triangulation of Polygons

Round Shapes?

Round Shapes?

� Tool to draw triangles
� Specify a general shape
� Makes the triangles for you

� Works like a SpriteBatch
� Has a begin/end
� Can set default color
� Several draw commands

� Can mix with SpriteBatch
� But not at the same time!
� End one before begin other

ShapeRenderer in LibGDX

render.circle(200, 200, 100, 5);

� Tool to draw triangles
� Specify a general shape
� Makes the triangles for you

� Works like a SpriteBatch
� Has a begin/end
� Can set default color
� Several draw commands

� Can mix with SpriteBatch
� But not at the same time!
� End one before begin other

ShapeRenderer in LibGDX

render.circle(200, 200, 100, 5);

Number of
triangles

ShapeRenderer Example

render.begin(ShapeRenderer.ShapeType.Filled);
render.setColor(Color.BLUE);
render.circle(200, 200, 100, 8);
render.end();

render.begin(ShapeRenderer.ShapeType.Line);
render.setColor(Color.RED);
render.circle(200, 200, 100, 8);
render.end();

ShapeRenderer Example

render.begin(ShapeRenderer.ShapeType.Filled);
render.setColor(Color.BLUE);
render.circle(200, 200, 100, 8);
render.end();

render.begin(ShapeRenderer.ShapeType.Line);
render.setColor(Color.RED);
render.circle(200, 200, 100, 8);
render.end();

ShapeRenderer Example

render.begin(ShapeRenderer.ShapeType.Filled);
render.setColor(Color.BLUE);
render.circle(200, 200, 100, 8);
render.end();

render.begin(ShapeRenderer.ShapeType.Line);
render.setColor(Color.RED);
render.circle(200, 200, 100, 8);
render.end();

Note separate pass for filled, outline

Textures

2D Image File

Mapped On To
Polygonal Shape

Simple Texturing in LibGDX

� PolygonSpriteBatch handles 90% of all cases
� Works like a normal SpriteBatch
� But now specify image and polygon
� Entirely replaced SpriteBatch in Lab 4

� Uses the PolygonRegion class
� Way to specify what part of image to use
� Specify as a collection of vertices
� Specify using pixel positions, not texture coords
� See PolygonObstacle in Lab 4

� Create vertices by pixel pos
� Example texture is 124x124
� Preferences set to wrap
� Store as an array of floats

� Must convert into triangles
� Each vertex has an index
� Given by position in array
� Create array of indices

� Construct PolygonRegion
� Specify texture
� Specify vertices+triangles

PolygonRegion Example

(0,0)

(0,64)

(128,0)

(192,128)

verts = {0,0,0,64,192,128,128,0}

� Create vertices by pixel pos
� Example texture is 124x124
� Preferences set to wrap
� Store as an array of floats

� Must convert into triangles
� Each vertex has an index
� Given by position in array
� Create array of indices

� Construct PolygonRegion
� Specify texture
� Specify vertices+triangles

PolygonRegion Example

(0,0)

(0,64)

(128,0)

(192,128)
Index 2

Index 3Index 0

Index 1

verts = {0,0,0,64,192,128,128,0}
tris = {0,1,3,3,1,2}

� Create vertices by pixel pos
� Example texture is 124x124
� Preferences set to wrap
� Store as an array of floats

� Must convert into triangles
� Each vertex has an index
� Given by position in array
� Create array of indices

� Construct PolygonRegion
� Specify texture
� Specify vertices+triangles

PolygonRegion Example

(0,0)

(0,64)

(128,0)

(192,128)

verts = {0,0,0,64,192,128,128,0}
tris = {0,1,3,3,1,2}

new PolygonRegion(img,verts,tris)

What If I Know OpenGL?

� Use the GL20 (OpenGLES 2.0) object
� Standard OpenGL functions are its methods
� Standard OpenGL values are its constants

� There is a GL30 (OpenGLES 3.0), but
� It is not the default OpenGL in LibGDX
� Requires special DesktopLauncher settings

� See Programming Lab 2 for examples
� Uses a custom OpenGL shader
� Also advanced LibGDX classes like Mesh

OpenGL Texturing

Texture Coordinates
(even if not square)

(0,0) (1,0)

(0,1) (1,1)

Triangle Coordinates

(4,0)

(0,4) (3,4)
(1,1)(0,1)

(1,0)

Specif
y Both!

Interpolates

OpenGL Texturing

Texture Coordinates
(even if not square)

(0,0) (1,0)

(0,1) (1,1)

Triangle Coordinates
(more than one triangle)

(4,0)

(0,4) (3,4)
(1,1)(0,1)

(1,0)

Interpolates

(2,0)
(0,0)

Summary

� Computer images defined by color channels
� Three visible channels: red, green, blue

� Sprites combined via compositing
� Alpha = percentage color in foreground

� Can use triangles instead of sprites
� Complex shapes defined by arrays of triangles

� Textures generalize the notion of color
� 2D image that is used to “color” triangle
� Need triangle coordinates and texture coordinates

