
gamedesigninitiative
at cornell university

the

Perspective
in 2D Games

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

Take Away for Today

� What is the game “camera”?
� How does it relate to screen space? Object space?

� How does the camera work in a 2D game? 3D?

� How do we give 2D games depth?
� Advantages, disadvantages of orthographic view
� Advantages, disadvantages of axonometric view

� How does “tileability” affect art in games?

The Game Camera

� What makes a game 3-D?
� Everything is shown on a 2-D screen (mostly)

� 3D game have a user controlled “camera”
� Position camera to look at art from all sides
� 3-D art has enough information to allow this

� CS/INFO 3152 limits you to a 2-D game
� The game camera has a fixed perspective
� You render all art to one visible side

Camera in 2D Games

Camera

World

World origin

Camera origin

� Camera is a coord space
� Called “eye space”

� Eye position at origin

� How to move camera?
� Transforms again!

� Inverse of scrolling
� Scrolling: move obj to eye

� Camera: move eye to obj

� Two matrices are inverses

Specifying the Camera

Plane Projection in Drawing

Cameras in LibGDX

� LibGDX has a Camera class
� Stores camera type, and eye location
� We typically use OrthographicCamera
� Define as size of screen, with origin at bottom

� Apply to SpriteBatch with setProjection()
� Convert camera into a Matrix4 object
� Use the combined field, not projection
� See GameCanvas.java in Lab 2

Cameras in LibGDX
SpriteBatch batch = new SpriteBatch();

// Create a camera for the game window

Camera camera = new OrthographicCamera(width,height);

// Set the camera in the SpriteBatch

Matrix4 matrix = camera.combined;

batch.setProjectionMatrix(matrix);

// Ready to use SpriteBatch

batch.begin();

…

Convert Camera to
transform to use

OrthographicCamera

� Used for all 2D games
� Objects have 2d positions
� Draws back-to-front

� Specify the viewport
� The window size
� The window origin
� Move origin to scroll

Cameras in LibGDX

PerspectiveCamera

� Used for all 3D games
� Objects have 3d positions
� Draws a picture plane

� Specify eye coordinates
� Eye origin
� Looking direction
� Up direction

� 3D Models make it easy
� Rotate model to position
� Flatten to png, tiff, etc…

� But 3D modeling is hard
� Very technical programs
� Cannot draw “by hand”

� How to draw perspective?
� Artist “captures” camera

� Realism creates problems

Drawing for a Perspective

Plane Projection in Drawing

Plane Projection in Drawing

Problem: Art assets are not
invariant under translation.

Vanishing Points are Not Our Friend

Vanishing Points are Not Our Friend

Vanishing Points are Not Our Friend

Vanishing Points are Not Our Friend

Should not be same

Vanishing Points are Not Our Friend

2D games rely on distortional perspectives

Parallel Projections

� Sprite art requires parallel projections
� Parallel lines are always parallel on screen
� Images can be translated within projection

� Three basic types of parallel projections
� Orthographic (reading calls this Multiview)
� Axonometric
� Oblique (particularly Cabinet)

� See today’s reading for taxonomy

Parallel Projections

� Sprite art requires parallel projections
� Parallel lines are always parallel on screen
� Images can be translated within projection

� Three basic types of parallel projections
� Orthographic (reading calls this Multiview)
� Axonometric
� Oblique (particularly Cabinet)

� See today’s reading for taxonomy

Not everyone uses
these terms in the
exact same way.

Orthographic Projection

� Project perpendicular to an axis
� Top-down: perpendicular to z-axis
� Side scrolling: perpendicular to y-axis

� Very easy to do artistically
� Art objects are flat tiles
� Layer tiles via compositing

� But enforces 2-D gameplay
� 3rd dimension lost; cannot be seen
� Distorted: All rays to eye are parallel

Orthographic Projection

Side-View: Braid

Top-Down: Hotline Miami

Top-Down: Gauntlet

Drawbacks of Orthographic Projection

� Top-down is extremely limiting
� Can only see the top of the avatar
� Hard to make interesting characters
� Orthographic is usually side-view (platformers)

� There little no depth to gameplay
� At best can create gameplay layers
� 3rd dimension is very discrete (2.5D)
� Represent 3rd dimension with parallax

Parallax Scrolling

� Gives depth to orthographic projection
� Objects in background have distance
� Rate of scrolling depends on distance

� Implement with multiple background layers
� Each layer scrolls at a different rate
� See course website for sample code

� Often requires some degree of transparency
� Composite front layers with back layers

Parallax Scrolling

Parallax Scrolling

� Off axis view of object
� View along all 3-axes

� Once again: distorted
� Not a true projection
� No vanishing point
� Axes are “foreshortened”

� Allows 3-D gameplay
� “Cliffs” are visible
� May also hide objects!

Axonometric Projection

2 axes equal

all axes equal

Axonometric: Starcraft

Isometric: Avernum Series

� Isometric
� All axes are equal
� If need all dimensions
� Used in classic RPGs

� Dimetric
� z-axis is very short
� x, y axes are equal
� Orthographic+depth
� For aesthetic reasons only

Projection Types

2 axes equal

all axes equal

� Axes relative to screen
� z goes “into” the screen
� x, y are in screen plane

� Axonometric coodinates
� May not be “true” coords
� “Meaning” of x, y, z?

� Orthographic substitutes
� Side-scroller: y is height
� Top-down: z is height

Projection Geometry

Isometric
x

y

z

z is “artificial”
dimension

Isometric View

� x, y, z = Axonometric Coords

� x’, y’ = Screen Coordinates

x’ = x - z

y’ = y + ½(x+z)

w

h

27°

45°
30°

Game View Top View Side View

Isometric View: Zaxxon

Classic Dimetric View (Side-Depth)

� x, y, z = Axonometric Coords

� x’, y’ = Screen Coordinates

x’ = x +½(z)

y’ = y +¼(z)

w

h
75° 10°

0.25

0.5

Game View Top View Side View

Classic Dimetric View (Top-Depth)

� x, y, z = Axonometric Coords

� x’, y’ = Screen Coordinates

x’ = x +¼(z)

y’ = y +½(z)

w

h
78° ~24°

0.5

0.25

Game View Top View Side View

RPG “¾ Perspective”

� x, y, z = Axonometric Coords

� x’, y’ = Screen Coordinates

x’ = x

y’ = ¾(y) +¾(z)

Top View Side ViewGame View

w

h
~45°

¾ Perspective: Link to the Past

But Gameplay is Still Orthographic

But Gameplay is Still Orthographic

But formula allow us to

“fly” between layers

Dimetric: Black Friday

Dimetric: Black Friday

Shadow is
“position”

Dimetric: Enter the Gungeon

Dimetric: Enter the Gungeon

Shadow

Isometric: Baldur’s Gate II

� Use boxes shown on slide
� Tiling boxes is easy
� Draw shape inside box

� Complex, large shapes?
� Glue together boxes
� Draw inside box group

� Objects need many angles
� Transparency is tricky
� Standard: 8 compass points

� Example: LakeHills.ai

Drawing for Axonometric View

� Use boxes shown on slide
� Tiling boxes is easy
� Draw shape inside box

� Complex, large shapes?
� Glue together boxes
� Draw inside box group

� Objects need many angles
� Transparency is tricky
� Standard: 8 compass points

� Example: LakeHills.ai

Drawing for Axonometric View

Isometric Walking Animation

Isometric Walking Animation

Isometric Animation: Starcraft

Oblique Perspective

� Less well-defined perspective category
� Axonometric with “arbitrary” foreshortening
� But game art is not always true mathematical

� But there are some historical categories
� Cabinet: Used in cabinet maker drawings
� Military: Used in classic military maps
� See Wikipedia page for more details

� In practice: orthographic with slight flair

Cabinet Perspective: Prince of Persia

Military Perspective: Sim City

Orthographic /Oblique

� Advantages
� Easy to make tiles

� Easy to composite

� Disadvantages
� Movement is 2D

� Game feels flat

� Common in this class

Which Style to Use?

Axonometric

� Advantages
� Sort of easy to tile

� Some 3-D movement

� Disadvantages
� Harder to composite

� Objects may be hidden

� Lot of work for artist

Combining the Perspectives

Combining the Perspectives

Orthographic
Characters

Dimetric
Environment

Summary

� Camera represents “eye space” coordinates
� 3D games have arbitrary camera movement
� 2D games are limited to scrolling movement

� 2-D art requires you chose a projection
� Orthographic is easy, but limits gameplay
� Axonometric has better gameplay, but harder to draw

� Axonmetric type depends on style of game
� Isometric common to classic RPGs
� Dimetric gives depth to traditional orthographic

