the . « e e g
gamedesigninitiative
at cornell university
]

Sprite
Graphics

Graphics Lectures

® Drawing Images
® SpriteBatch interface

® (Coordinates and Transforms

® Drawing Perspective
® (Camera

® Projections

® Drawing Primitives
® (Color and Textures

® Polygons

Graphics Lectures

® Drawing Images —

® SpriteBatch interface - bare minimum
to draw graphics

® (Coordinates and Transforms

® Drawing Perspective —
® (Camera - side-scroller vs.
o top down
® Projections _
® Drawing Primitives —
® Color and Textures - necessary for
lighting & shadows
® Polygons)

Graphics Lectures

® Drawing Images
® SpriteBatch interface

® (Coordinates and Transforms

® Drawing Perspective - ation 1s part
® Camera A“‘{ Al Lecmtes
\

® Projections

® Drawing Primitives
® (Color and Textures

® Polygons

Graphics Lectures

® Drawing Images —

® SpriteBatch interface - bare minimum
to draw graphics

® (Coordinates and Transforms

® Drawing Perspective —
® (Camera - side-scroller vs.
o top down
® Projections _
® Drawing Primitives —
® Color and Textures - necessary for
lighting & shadows
® Polygons)

Take Away for Today

® Coordinate Spaces and drawing
® What 1s screen space? Object space?
® How do we use the two to draw objects?

® Do we need any other spaces as well?

® Drawing Transforms
® What 1s a drawing transform?
® Describe the classic types of transforms.

® List how to use transforms in a game.

The SpriteBatch Interface

® [n this ¢

ass we restrict you to 2D graphics

® 3D gra

phics are much more complicated

® (Covered in much more detail 1n other classes

® Art 1

701: Artist tools for 3D Models

® CS 4620: Programming with 3D models

® In LibGDX, use the class SpriteBatch

® Sprite:

Pre-rendered 2D (or even 3D) 1image

® All you do 1s composite the sprites together

Drawing in 2 Dimensions

® Use coordinate systems
® Each pixel has a coordinate A

® Draw something at a pixel by (2,4)

® Specifying what to draw

® Specifying where to draw

< /
® Do we draw each pixel? (-1,-1) /
® Use a drawing API

® (Given an 1mage; does work
® What LibGDX gives us Y

Sprite Coordinate Systems

® Screen coordinates: where to paint the image
® Think screen pixels as a coordinate system
® Very important for object rransformations
® Example: scale, rotate, translate
® [n 2D, LibGDX origin 1s bottom left of screen

® Object coordinate: location of pixels in object
® Think of sprite as an 1image file (it often 1s)
® (Coordinates are location of pixels 1n this file

® Unchanged when object moves about screen

Sprite Coordinate Systems

(0,0)

Screen: (300, 200) '
Object (0,0)

+Xx

Historical Coordinate Systems

(0,0 +x

Screen: (300,200) ObJect (0, 0)

>

Historical Coordinate Systems

(0,0) X

Screen: (300,200) ObJect (0, 0)

Mouse coordinates still do this
(see LoadingMode.java 1n labs)

>

Drawing Sprites

® Basic instructions:
® Set origin for the image in object coordinates
® (Give the SpriteBatch a point to draw at

® Screen places origin of 1mage at that point

® What about the other pixels?

® Depends on transformations (rotated? scaled?)

® But these (almost) never affect the origin

® Sometimes we can reset the object origin

Sprite Coordinate Systems

(0,0)

Screen: (300, 200) '
Object (0,0)

+Xx

Sprite Coordinate Systems

Screen: (300,200)"; 0 (0

Object: (0,0)

(0,0)

+x

Sprite Coordinate Systems

Screen: (350,225)

Object: (0,0)

(0,0)

+Xx

Sprite Coordinate Systems

Screen: (350,225) \

Object: (0,0)

(0,0)

+Xx

Drawing with SpriteBatch

public void draw(float dt) {

spriteBatch.begin();
spriteBatch.draw(imageO);

spriteBatch.draw(imagel, gos.x, pos%);
"

SCreen

SpPiteB&tCh. end(), coordinates

2D Transforms

® A function 7 : R?—>R?

® “Moves” one set of points to another set of points
® Transforms one “coordinate system” to another

® The new coordinate system 1s the distortion

® Idea: Draw on paper and then “distort” 1t
® Examples: Stretching, rotating, reflecting
® Determines placement of “other” pixels

® Also allows us to get multiple images for free

The “Drawing Transform”

® T': object coords — screen coords
® Assume pixel (a,b) in art file 1s blue
® Then screen pixel 7(a,b) 1s blue
® We call 7 the object map

® By default, object space = screen space
® Color of 1mage at (a,b) = color of screen at (a,b)

® By drawing an 1mage, you are fransforming it

® S an 1mage; transformed 1mage 1s 7(S)

Example: Translation

® Simplest transformation: 7(v) =v + u
® Shifts object in direction u

® Distance shifted 1s magnitude of u

® Used to place objects on screen
® By default, object origin is screen origin

® 7(v) =v +u places object origin at u

()

Aside: Matching Your Translation

® Movement is two things

® Animation of the filmstrip
® Translation of the image

® These two must align

¢ Example: Walking
® Foot is point of contact

® “Stays in place” as move

® This constrains translation

® Make movement regular
® Measure distance per frame

® Keep same across frames

Aside: Matching Your Translation

® Movement is fwo things

® Animation of the filmstrip
® Translation of the image

® These two must align

® Example: Walking
® Foot is point of contact

® “Stays in place” as move

® This constrains translation

® Make movement regular
® Measure distance per frame

® Keep same across frames

Aside: Matching Your Translation

® Movement is two things
® Animation of the filmstrip
® Translation of the image

® These two must align

® Example: Walking
® Foot is point of contact
® “Stays in place” as move

® This constrains translation

® Make movement regular
® Measure distance per frame

® Keep same across frames

Point of Distance
contact forward

Composing Transforms

¢ Example: 7: R>>R?, §: R*>R?
® Assume pixel (a,b) in art file 1s blue

® Transform 7' makes pixel 7(a,b) blue
® Transform SoT makes pixel S(7(a,b)) blue

® Strategy: use transforms as building blocks
® Think about what you want to do visually
® Break it into a sequence of transforms

® Compose the transforms together

Application: Scrolling

World origin

Application: Scrolling

World origin

Application: Scrolling

World origin

Scrolling: Two Translations

® Place object in the World at point p = (x,»)

® Basic drawing transform 1s 7(v) = v+p

® Suppose Screen originis at q = (x",y")
® Then object 1s on the Screen at point p-q

® S(v) = v-q transforms World coords to Screen

® So7{(v) transforms the Object to the Screen

® This separation makes scrolling easy
® To move the object, change T but leave S same

® To scroll the screen, change S but leave 7' same

Scrolling: Practical Concerns

® Many objects will exists outside screen

® (Can draw 1if want; graphics card will drop them

® |t 1s expensive to keep track of them all

® But is also unrealistic to always 1gnore them

® In graphics, drawing transform = matrix

Hence composition = matrix multiplication

Details beyond the scope of this course

Li1bGDX handles all of this for you (sort of)

-

Using Transforms in LibGDX

® LibGDX has methods for creating transforms
® Two types depending on application
® Affine? for transforming 2D sprites
® Matrix4 for transforming 3D object

® But also for transforming fonts

® Parameters fill in details about transform
® Example: Position (x,y) if a translation

® The most math you will ever need for this

Transforms in SpriteBatch

Affine2 Matrix4
® Pass it to a draw command ® Pass to setTransformMatrix
® Applies only to that image ® Applies to all images!
® Adds to CPU power Handled by the GPU but. ..
® Handles everything ® Change causes GPU stall

® [ocation 1s in transform ® Only use this if you must

® Transform to object position ® ¢.g. Transforming fonts

® sb.draw(image,wd,ht,affine); ® See GameCanvas in Labl

Transforms in SpriteBatch

Affine2 Matrix4
® Pass it to a draw command ® Pass to setTransformMatrix
® Applies only to that image ® Applies to all images!
® Adds to CPU power Handled by the GPU but. ..
® Handles everything ® Change causes GPU stall

® [ocation 1s in transform ® Only use this if you must

® Transform to object position ® ¢.g. Transforming fonts

® sb.draw(image,wd,ht,affine); ® See GameCanvas in Labl

Only supports a
TextureRegion??

Positioning in LibGDX

public void draw(float dt) {

Vector? pos = object.getPosition();

spriteBatch.begin();
spriteBatch.draw(image,pos.x,pos.y);
spriteBatch.end();

}

Positioning in LibGDX

public void draw(float dt) {
Affine? oTran = new Affine?();
oTran.setToTranslation(object.getPosition());
\

Translate origin to
position 1n world.

spriteBatch.begin();
spriteBa,tch.draw(ima,ge,width,height]oTra,n);
spriteBatch.end(); T
) why did they

do this???

Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affinel();
oTran.setToTranslation(object.getPosition());
Affine? wtran = new Affine2():)
Vector? wPos = viewWindow.getPosition(); . scrolling
wTran.setToTranslation(-wPos.x,-wPos.y); support
oTran.mul(wTran);
spriteBatch.begin();
spriteBatch.draw(image,width,height,oTran);
spriteBatch.end();

7

Transform Gallery

® Uniform Scale: [S O] [CB } — { Sx]
0 SY

S Y

15 O
0 1.5

>

K\ affine.setToScaling(s,s);

Transform Gallery

® Uniform Scale: {8 O][az}:{sx]
0 s Y SY

15 0
15

h R

affine.setToScaling(s,s);

Represent as
2X2 matrix

Matrix Transform Gallery

® Nonuniform Scale: { Sz U } { L } — [Szl]
0 sy Y Syl

1.5 0
0 0.8

R R

affine. setToScallng(sx sy);

Matrix Transform Gallery

® Rotation:
- cosf) —sind r | | xcost —ysinb
- sinf cosd y | | xsinf + ycosb
- 0.866 —0.5
0.5 0.866

>

\\ affine.setToRotationRad(angle); /}

Matrix Transform Gallery

* Reflection: {—Ol H[ﬂ:{j]

—1 0
® View as special case of Scale [0 1 }

R A

Matrix Transform Gallery

s [1][3] [

R R

affine.setToShearing(a,l);

Translation Revisited

® Translation is not a linear transform
® To be linear, T(v+w) =T(v)+T(w)
® Translation transform is T(v) = v+u
® T(v)+T(w) = (vtu)+(wtu) = vitw+2u # T(v+w)

® But LibGDX treats 1t like one

® Affine? transforms support translation

® Matrix4 supports matrix.set(affine)

® What 1s going on here?

Homogenous Coordinates

® Add an extra dimension to the calculation.
® An extra component w for vectors
® For affine transformations, can keep w = 1

® Add extra row, column to matrices (so 3x3)

® Dimension 1s for calculation only

® We are not in 3D-space yet
® 3D transforms need 4D vectors, 4x4 matrices

® Matrix4 because LibGDX supports 3D

Homogenous Coordinates

® Linear transforms have dummy row and column

a b 0] [=« ax + by |
c d 0 y | = | cx+dy
0 0 1T || 1] I 1 |

® Translation uses extra column

1 0 ¢ X x+t
0 1 s y | = | y+s
0 0 1]| 1 1

Affine Transforms Revisited

® Affine: Linear on homogenous coords
® Equal to all transforms 7(v) = Mv+p
® Treat everything as matrix multiplication

® Why does this work?

® Area of mathematics called projective geometry
® Far beyond the scope of this class

® LibGDX hides all the messy details
® Just stick with Affine? class for now

Affine Transform Gallery

® Translation:

1 0 t,
0 1 t, 1 0 215
0 0 1 0 1 0.85

Affine Transform Gallery

® Uniform Scale:

OO W
O »w O
_ O O
-
[S—
Ut
-

Affine Transform Gallery

® Nonuniform Scale:

Sx

0

0 0
Sy 0

0 0 1.

1.5 0 0
0 08 0
0 0 1

R

Affine Transform Gallery

® Rotation:

cos 6
sin 6
0

—sinf 0
cosd 0
0 1

- 0.866
0.9
0

—0.5 0
0.866 0
0 1

Affine Transform Gallery

® Reflection:

® Special case of Scale —1 0 0

-
p—
-

Affine Transform Gallery

® Shear:
1 a 0 1 05 0 |
0 1 0 0 1 0
0 0 1 0 0 1

Compositing Transforms

® In general not commutative: order matters!

rotate, then translate translate, then rotate

Compositing Transforms

® In general not commutative: order matters!

\ 4

scale, then rotate rotate, then scale

Rotating Object About Center

A

® Translate center to origin
® Rotate about origin

® Translate to object position

(0,0)

+Xx

Rotating Object About Center

A

® Translate center to origin
® Rotate about origin

® Translate to object position

(0,0)

+Xx

Rotating Object About Center

A

® Translate center to origin
® Rotate about origin

® Translate to object position

+Xx

Rotating Object About Center

A ..
® Translate center to origin

® Rotate about origin

® Translate to final position

+Xx

Rotating Object About Center

A

® Translate center to origin
® Rotate about origin

® Translate to final position

(0,0)

+Xx

Transforms and Modular Animation

® Break asset into parts
® Natural for joints/bodies

® Animate each separately

® (Cuts down on filmstrips

® Most steps are transforms

® A lot less for you to draw

® Also better for physics

® Several tools to help you
® Example: Spriter, Spine

® QGreat for visualizing design

Transforms and Modular Animation

® Break asset into parts
® Natural for joints/bodies

® Animate each separately

® (Cuts down on filmstrips
® Most steps are transforms

® A lot less for you to draw

® Also better for physics

® Several tools to help you
® Example: Spriter, Spine

® QGreat for visualizing design

Transforms and Modular Animation

® Break asset into parts
® Natural for joints/bodies

® Animate each separately

® (Cuts down on filmstrips
® Most steps are transforms

® A lot less for you to draw

® Also better for physics

® Several tools to help you
® Example: Spriter, Spine

® QGreat for visualizing design

pine Demo

S p ne raptor

%] / = & Ccollapse Expand

I raptor
== root
@ raptor_arm_back
@ raptor_front_arm
@ raptor_tongue
front_foot_goal
== hip
front_leg1
rear_legl
« taill
torsol
@ raptor_body

Pose £ Rotate - Local A 171 raptor_body

-~) < =
. Weights = Translate <« Parent o &Y Images # saddle

Scale < World S > p # torso2
rear_foot_goal
Dopesheet Draw Order
M Images
Current 14 Loop Start Loop End b Auto Key 2, ciin
L 14 ns
Collapse Expand @ =| Shift Adjust e} Offset A Animations

& Constraints

i 4P P -
walk IR AL 10

- & torsol l |
Rotate t
Translate

¥: Mesh: raptor_body
)

emo

S p ne raptor

/g_

Pose

ero
. Weights

Dopesheet

Current 14 Loop Start
Collapse Expand @

i 4P D
walk
- & torsol
Rotate
» Translate

¥ Mesh: raptor_body
)

Loop End

| Stuie

Adjust

ap Offset

&

I raptor

== root
@ raptor_arm_back
@ raptor_front_arm

S\ raptor_tongue
nt_foot_goal

r_body
iptor_body
saddle
torso2
rear_foot_goal
Draw Order
M Images
a7 Skins
A Animations
B Events

& Constraints

Collapse Expand

A Word About Scaling

® [f making smaller, 1t drops out pixels
® Suppose 7(v) =0.5v
® (0,0)=71(0,0); pixel (0,0) colored from (0,0) 1n file
® (0,1)=1(0,2); pixel (0,1) colored from (0,2) in file

® But if making larger, 1t duplicates pixels
® Suppose 1(v) =2v
® (0,1)=1(0,0.5); pixel (0,1) colored from (0,1) 1n file
® (0,1)=1(0,1); pixel (0,2) colored from (0,1) in file

® This can lead to jaggies

Scaling and Jaggies

® Jaggies: Image is blocky

® Possible to smooth 1image

® Done through blurring
® [n addition to transform

® Some graphic card support

® Solution for games
® Shrinking is okay
® Enlarging not (always) okay

® Make sprite large as needed

Summary

® Drawing is all about coordinate systems

® Object coords: Coordinates of pixels in image file

® Screen coords: Coordinates of screen pixels

® Transforms alter coordinate systems
® “Multiply” image by matrix to distort them
® Multiply transforms together to combine them
® Matrices are not commutative

® Later transforms go on “the right”

