
gamedesigninitiative
at cornell university

the

Sprite
Graphics

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

Animation is part

of AI Lectures

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

Take Away for Today

� Coordinate Spaces and drawing
� What is screen space? Object space?
� How do we use the two to draw objects?
� Do we need any other spaces as well?

� Drawing Transforms
� What is a drawing transform?
� Describe the classic types of transforms.
� List how to use transforms in a game.

The SpriteBatch Interface

� In this class we restrict you to 2D graphics
� 3D graphics are much more complicated
� Covered in much more detail in other classes
�Art 1701: Artist tools for 3D Models
�CS 4620: Programming with 3D models

� In LibGDX, use the class SpriteBatch
� Sprite: Pre-rendered 2D (or even 3D) image
� All you do is composite the sprites together

� Use coordinate systems
� Each pixel has a coordinate
� Draw something at a pixel by

� Specifying what to draw
� Specifying where to draw

� Do we draw each pixel?
� Use a drawing API
� Given an image; does work
� What LibGDX gives us

Drawing in 2 Dimensions

y

x

(2,4)

(-1,-1)

Sprite Coordinate Systems

� Screen coordinates: where to paint the image
� Think screen pixels as a coordinate system
� Very important for object transformations

� Example: scale, rotate, translate
� In 2D, LibGDX origin is bottom left of screen

� Object coordinate: location of pixels in object
� Think of sprite as an image file (it often is)
� Coordinates are location of pixels in this file
� Unchanged when object moves about screen

Sprite Coordinate Systems

(0,0)

Screen: (300,200)
Object: (0,0)

+y

+x

Historical Coordinate Systems
(0,0)

Screen: (300,200) Object: (0,0)

+y

+x

Historical Coordinate Systems
(0,0)

Screen: (300,200) Object: (0,0)

+y

+x

Mouse coordinates still do this
(see LoadingMode.java in labs)

Drawing Sprites

� Basic instructions:
� Set origin for the image in object coordinates
� Give the SpriteBatch a point to draw at
� Screen places origin of image at that point

� What about the other pixels?
� Depends on transformations (rotated? scaled?)
� But these (almost) never affect the origin

� Sometimes we can reset the object origin

Sprite Coordinate Systems

(0,0)

Screen: (300,200)
Object: (0,0)

+y

+x

Sprite Coordinate Systems

(0,0)

Screen: (300,200)
Object: (0,0)

+y

+x

Sprite Coordinate Systems

(0,0)

Screen: (350,225)

Object: (0,0)

+y

+x

Sprite Coordinate Systems

(0,0)

Screen: (350,225)

Object: (0,0)

+y

+x

Drawing with SpriteBatch

public void draw(float dt) {
…
spriteBatch.begin();
spriteBatch.draw(image0);
spriteBatch.draw(image1, pos.x, pos.y);
…
spriteBatch.end();
…

}

screen
coordinates

2D Transforms

� A function T : R2®R2

� “Moves” one set of points to another set of points
� Transforms one “coordinate system” to another
� The new coordinate system is the distortion

� Idea: Draw on paper and then “distort” it
� Examples: Stretching, rotating, reflecting
� Determines placement of “other” pixels
� Also allows us to get multiple images for free

The “Drawing Transform”

� T : object coords ® screen coords
� Assume pixel (a,b) in art file is blue
� Then screen pixel T(a,b) is blue
� We call T the object map

� By default, object space = screen space
� Color of image at (a,b) = color of screen at (a,b)
� By drawing an image, you are transforming it

� S an image; transformed image is T(S)

Example: Translation

� Simplest transformation: T(v) = v + u
� Shifts object in direction u
� Distance shifted is magnitude of u

� Used to place objects on screen
� By default, object origin is screen origin
� T(v) = v + u places object origin at u

S T(S)

� Movement is two things
� Animation of the filmstrip
� Translation of the image
� These two must align

� Example: Walking
� Foot is point of contact
� “Stays in place” as move
� This constrains translation

� Make movement regular
� Measure distance per frame
� Keep same across frames

Aside: Matching Your Translation

� Movement is two things
� Animation of the filmstrip
� Translation of the image
� These two must align

� Example: Walking
� Foot is point of contact
� “Stays in place” as move
� This constrains translation

� Make movement regular
� Measure distance per frame
� Keep same across frames

Aside: Matching Your Translation

� Movement is two things
� Animation of the filmstrip
� Translation of the image
� These two must align

� Example: Walking
� Foot is point of contact
� “Stays in place” as move
� This constrains translation

� Make movement regular
� Measure distance per frame
� Keep same across frames

Aside: Matching Your Translation

Point of
contact

Distance
forward

Composing Transforms

� Example: T : R2®R2, S : R2®R2

� Assume pixel (a,b) in art file is blue
� Transform T makes pixel T(a,b) blue
� Transform S!T makes pixel S(T(a,b)) blue

� Strategy: use transforms as building blocks
� Think about what you want to do visually
� Break it into a sequence of transforms
� Compose the transforms together

Application: Scrolling

World

World origin

Application: Scrolling

World

World origin

Object origin

Application: Scrolling

Screen

World

World origin

Screen origin

Object origin

Scrolling: Two Translations

� Place object in the World at point p = (x,y)
� Basic drawing transform is T(v) = v+p

� Suppose Screen origin is at q = (x’,y’)
� Then object is on the Screen at point p-q
� S(v) = v-q transforms World coords to Screen
� S!T(v) transforms the Object to the Screen

� This separation makes scrolling easy
� To move the object, change T but leave S same
� To scroll the screen, change S but leave T same

Scrolling: Practical Concerns

� Many objects will exists outside screen
� Can draw if want; graphics card will drop them
� It is expensive to keep track of them all
� But is also unrealistic to always ignore them

� In graphics, drawing transform = matrix
� Hence composition = matrix multiplication
� Details beyond the scope of this course
� LibGDX handles all of this for you (sort of)

Using Transforms in LibGDX

� LibGDX has methods for creating transforms
� Two types depending on application
� Affine2 for transforming 2D sprites
� Matrix4 for transforming 3D object
�But also for transforming fonts

� Parameters fill in details about transform
� Example: Position (x,y) if a translation
� The most math you will ever need for this

Affine2

� Pass it to a draw command
� Applies only to that image
� Adds to CPU power

� Handles everything
� Location is in transform
� Transform to object position

� sb.draw(image,wd,ht,affine);

Transforms in SpriteBatch

Matrix4

� Pass to setTransformMatrix
� Applies to all images!
� Handled by the GPU but…
� Change causes GPU stall

� Only use this if you must
� e.g. Transforming fonts
� See GameCanvas in Lab1

Affine2

� Pass it to a draw command
� Applies only to that image
� Adds to CPU power

� Handles everything
� Location is in transform
� Transform to object position

� sb.draw(image,wd,ht,affine);

Transforms in SpriteBatch

Matrix4

� Pass to setTransformMatrix
� Applies to all images!
� Handled by the GPU but…
� Change causes GPU stall

� Only use this if you must
� e.g. Transforming fonts
� See GameCanvas in Lab1

Only supports a
TextureRegion??

Positioning in LibGDX

public void draw(float dt) {

Vector2 pos = object.getPosition();

spriteBatch.begin();
spriteBatch.draw(image,pos.x,pos.y);

spriteBatch.end();
}

Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affine2();
oTran.setToTranslation(object.getPosition());

spriteBatch.begin();
spriteBatch.draw(image,width,height,oTran);

spriteBatch.end();
}

Translate origin to
position in world.

why did they
do this???

Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affine2();
oTran.setToTranslation(object.getPosition());
Affine2 wtran = new Affine2();
Vector2 wPos = viewWindow.getPosition();
wTran.setToTranslation(-wPos.x,-wPos.y);
oTran.mul(wTran);
spriteBatch.begin();

spriteBatch.draw(image,width,height,oTran);
spriteBatch.end();

}

scrolling
support

Transform Gallery

� Uniform Scale:

affine.setToScaling(s,s);

Transform Gallery

� Uniform Scale:

affine.setToScaling(s,s);

Represent as
2x2 matrix

Matrix Transform Gallery

� Nonuniform Scale:

affine.setToScaling(sx,sy);

Matrix Transform Gallery

� Rotation:

affine.setToRotationRad(angle);

Matrix Transform Gallery

� Reflection:

� View as special case of Scale

Matrix Transform Gallery

� Shear:

affine.setToShearing(a,1);

Translation Revisited

� Translation is not a linear transform
� To be linear, T(v+w) = T(v)+T(w)
� Translation transform is T(v) = v+u
� T(v)+T(w) = (v+u)+(w+u) = v+w+2u ≠ T(v+w)

� But LibGDX treats it like one
� Affine2 transforms support translation
� Matrix4 supports matrix.set(affine)

� What is going on here?

Homogenous Coordinates

� Add an extra dimension to the calculation.
� An extra component w for vectors
� For affine transformations, can keep w = 1
� Add extra row, column to matrices (so 3×3)

� Dimension is for calculation only
� We are not in 3D-space yet
� 3D transforms need 4D vectors, 4×4 matrices

� Matrix4 because LibGDX supports 3D

Homogenous Coordinates

� Linear transforms have dummy row and column

� Translation uses extra column

Affine Transforms Revisited

� Affine: Linear on homogenous coords
� Equal to all transforms T(v) = Mv+p
� Treat everything as matrix multiplication

� Why does this work?
� Area of mathematics called projective geometry
� Far beyond the scope of this class

� LibGDX hides all the messy details
� Just stick with Affine2 class for now

Affine Transform Gallery

� Translation:

Affine Transform Gallery

� Uniform Scale:

Affine Transform Gallery

� Nonuniform Scale:

Affine Transform Gallery

� Rotation:

Affine Transform Gallery

� Reflection:

� Special case of Scale

Affine Transform Gallery

� Shear:

Compositing Transforms

rotate, then translate translate, then rotate

� In general not commutative: order matters!

Compositing Transforms

scale, then rotate rotate, then scale

� In general not commutative: order matters!

Rotating Object About Center

(0,0)

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to object position

Rotating Object About Center

(0,0)

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to object position

Rotating Object About Center

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to object position

Rotating Object About Center

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to final position

Rotating Object About Center

(0,0)

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to final position

� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Transforms and Modular Animation

� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Transforms and Modular Animation

� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Transforms and Modular Animation

Spine Demo

Spine Demo

More on this in AI Lecture

A Word About Scaling

� If making smaller, it drops out pixels
� Suppose T(v) = 0.5v
� (0,0) = T(0,0); pixel (0,0) colored from (0,0) in file
� (0,1) = T(0,2); pixel (0,1) colored from (0,2) in file

� But if making larger, it duplicates pixels
� Suppose T(v) = 2v
� (0,1) = T(0,0.5); pixel (0,1) colored from (0,1) in file
� (0,1) = T(0,1); pixel (0,2) colored from (0,1) in file

� This can lead to jaggies

� Jaggies: Image is blocky

� Possible to smooth image
� Done through blurring
� In addition to transform
� Some graphic card support

� Solution for games
� Shrinking is okay
� Enlarging not (always) okay
� Make sprite large as needed

Scaling and Jaggies

Summary

� Drawing is all about coordinate systems
� Object coords: Coordinates of pixels in image file
� Screen coords: Coordinates of screen pixels

� Transforms alter coordinate systems
� “Multiply” image by matrix to distort them
� Multiply transforms together to combine them
�Matrices are not commutative
�Later transforms go on “the right”

