
gamedesigninitiative
at cornell university

the

Memory Management



Take-Aways for This Lesson

�Why does memory in games matter?
� Is there a difference between PC and mobile?
� Where do consoles fit in all this?

�Do we need to worry about it in Java?
� Java has garbage collection
� Handles the difficult bits for us, right?

�What can we do in LibGDX?



� Playstation 3
� 256 MB RAM for system
� 256 MB for graphics card

� X-Box 360
� 512 MB RAM (unified)

� Nintendo Wii
� 88 MB RAM (unified)
� 24 MB for graphics card

� iPhone/iPad
� 1 GB RAM (unified)

Gaming Memory (Generation 7)



� Playstation 4
� 8 GB RAM (unified)

� X-Box One
� 12 GB RAM (unified)
� 9 GB for games

� Nintendo Wii-U
� 2 GB RAM (unified)
� 1 GB only for OS

� iPhone/iPad
� 2 GB RAM (unified)

Gaming Memory (Generation 8)



� Playstation 5
� 16 GB RAM (unified)
� Speed 448GB/s

� X-Box Series X
� 16 GB RAM (unified)
� Speed 560-336GB/s

� Nintendo Switch
� 3 GB RAM (unified)
� Speed 25.6 GB/s

� iPhone/iPad
� 6 GB RAM (unified)
� Speed 42.7 GB/s

Gaming Memory (Current Generation)



� Generation 7
� Modern(ish) GPUs
� Horrible memory
� Pretty, but short games

� Generation 8
� Minor GPU increases
� Massive memory increases
� Open world games

� Generation 9
� Minor GPU, memory boosts
� Massive bandwidth boosts
� Shorter loading time = ???

Aside: Memory Affects Games



� Secondary storage exists
� Consoles/iPad have 1 TB

� Most platforms solid state

� Bandwith is improving!
� Good SSDs hit 2.5 GB/s 

� PS5 5.5 GB/s, XBX 4.8 GB/s

� BUT recall 16 ms per frame
� At best, can access 90 MB

� Yields uneven performance

What About Virtual Memory?



� Secondary storage exists
� Consoles/iPad have 1 TB

� Most platforms solid state

� Bandwith is improving!
� Good SSDs hit 2.5 GB/s 

� PS5 5.5 GB/s, XBX 4.8 GB/s

� BUT recall 16 ms per frame
� At best, can access 90 MB

� Yields uneven performance

What About Virtual Memory?

Not really a thing for games



� Initial heap size
� Memory app starts with
� Can get more, but stalls app
� Set with –Xms flag

� Maximum heap size
� OutOfMemory if exceed
� Set with –Xmx flag

� Defaults by RAM installed
� Initial 25% RAM (<64 MB)
� Max is 75% RAM (<2 GB)
� Need more, then set it

> java –cp game.jar GameMain

> java –cp game.jar –Xms:64m
GameMain

> java –cp game.jar –Xmx:4g
GameMain

> java –cp game.jar –Xms:64m 
–Xms:64m GameMain

Aside: Java Memory



� Pixel color is 4 bytes
� 1 byte each for r, b, g, alpha
� More if using HDR color

� Image a 2D array of pixels
� 1280x1024 monitor size
� 5,242,880 bytes ~ 5 MB

� More if using mipmaps
� Graphic card texture feature
� Smaller versions of image
� Cached for performance
� But can double memory use

Memory Usage: Images



� Pixel color is 4 bytes
� 1 byte each for r, b, g, alpha
� More if using HDR color

� Image a 2D array of pixels
� 1280x1024 monitor size
� 5,242,880 bytes ~ 5 MB

� More if using mipmaps
� Graphic card texture feature
� Smaller versions of image
� Cached for performance
� But can double memory use

Memory Usage: Images

Original Image

MipMaps



� Formats often compressed
� JPEG, PNG, GIF
� But not always TIFF

� Uncompress to display
� Need space to uncompress
� In RAM or graphics card

� Only load when needed
� Loading is primary I/O 

operation in AAA games
� Causes “texture popping”

But My JPEG is only 8 KB!



� Formats often compressed
� JPEG, PNG, GIF
� But not always TIFF

� Uncompress to display
� Need space to uncompress
� In RAM or graphics card

� Only load when needed
� Loading is primary I/O 

operation in AAA games
� Causes “texture popping”

But My JPEG is only 8 KB!

Sounds have a similar problem



Loading Screens



� How to load assets?
� May have a lot of assets
� May have large assets

� Loading is blocking
� Game stops until done
� Cannot draw or animate

� May need to unload
� Running out of memory
� Free something first

Problems with Asset Loading

Update

Draw

Init



� How to load assets?
� May have a lot of assets
� May have large assets

� Loading is blocking
� Game stops until done
� Cannot draw or animate

� May need to unload
� Running out of memory
� Free something first

Problems with Asset Loading

Update

Draw

Init
Blocks 

all drawing

Blocks 
next frame



Loading Screens

Minimal animation/feedback 

while loading assets



Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

Update and draw 
simple animations 
until assets loaded



Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

� Also an asset manager
� Each asset given a key
� Can access asset by key
� Like a map/hashtable



Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

� Not always a good idea
� May need OpenGL utils
� Example: Textures
� Limited to main thread



Alternative: Iterative Loader

Asset Loader

Game Thread Asset Manager

Update

Draw

Initialize

Update

Access



� Uses a time budget
� Give set amount of time
� Do as much as possible
� Stop until next update

� Better for OpenGL 
� Give time to manager
� Animate with remainder
� No resource contention

� LibGDX approach
� But async behind scenes

Alternative: Iterative Loader

Asset Loader

Asset Manager

Initialize

Update

Access



� Uses a time budget
� Give set amount of time
� Do as much as possible
� Stop until next update

� Better for OpenGL 
� Give time to manager
� Animate with remainder
� No resource contention

� LibGDX approach
� But async behind scenes

Alternative: Iterative Loader

Load
Assets

Draw

Update

Budget b

Remaining
time t–b



Assets Beyond Images

� AAA games have a lot of 3D geometry
� Vertices for model polygons
� Physics bodies per polygon
� Scene graphs for organizing this data

� How do we load these things?
� Managers handle built-in asset types
� What if we need to make a custom data type?

� And exactly when do we load these?



Custom Loaders in LibGDX

� The LibGDX asset system is modular
� Use an asset manager to load/store assets
� But each asset type has an associate loader

� A loader class has the following
� Inner subclass of AssetLoaderParameters
� Method loadSync for loading in main thread
� Method loadAsync safe for separate threads

� GDIAC extensions have associated parsers
� Reads asset json and sends information to loaders
� Primarily an iterator for AssetLoaderParameters



Assets Beyond Images

� AAA games have a lot of 3D geometry
� Vertices for model polygons
� Physics bodies per polygon
� Scene graphs for organizing this data

� How do we load these things?
� Managers handle built-in asset types
� What if we need to make a custom data type?

� And exactly when do we load these?



Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

High Address

Low Address



Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Function parameters
Local variables
Return values

High Address

Low Address



Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
(e.g. Every object in Java)

Function parameters
Local variables
Return values

High Address

Low Address



Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
(e.g. Every object in Java)

Function parameters
Local variables
Return values

Easy to Handle

Easy to Handle

High Address

Low Address



Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
(e.g. Every object in Java)

Function parameters
Local variables
Return values

Easy to Handle

Easy to Handle

Problems!

High Address

Low Address



� It can be slower to access
� Not always contiguous
� Stacks are nicer for caches

� Garbage collection is brutal
� Old collectors would block
� New collectors are better…
� …but slower than manual

� Very bad if high churn 
� Rapid creation/deletion
� Example: Particle systems

private void handleCollision(Shell s1, Shell s2) {
// Find the axis of "collision"
Vector2 axis = new Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 

…

// Compute the projections 
Vector2 temp1 = new Vector2(s2.getPosition());
temp1.sub(s1.getPosition()).nor();
Vector2 temp2 = new Vector2(s1.getPosition());
temp2.sub(s2.getPosition()).nor();

// Compute new velocities
temp1.scl(temp1.dot(s1.getVelocity()));
temp2.scl(temp2.dot(s2.getVelocity()));

// Apply to the objects 
s1.getVelocity().sub(temp1).add(temp2);
s2.getVelocity().sub(temp2).add(temp1);

}

Problem with Heap Allocation



� It can be slower to access
� Not always contiguous
� Stacks are nicer for caches

� Garbage collection is brutal
� Old collectors would block
� New collectors are better…
� …but slower than manual

� Very bad if high churn 
� Rapid creation/deletion
� Example: Particle systems

private void handleCollision(Shell s1, Shell s2) {
// Find the axis of "collision"
Vector2 axis = new Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 

…

// Compute the projections 
Vector2 temp1 = new Vector2(s2.getPosition());
temp1.sub(s1.getPosition()).nor();
Vector2 temp2 = new Vector2(s1.getPosition());
temp2.sub(s2.getPosition()).nor();

// Compute new velocities
temp1.scl(temp1.dot(s1.getVelocity()));
temp2.scl(temp2.dot(s2.getVelocity()));

// Apply to the objects 
s1.getVelocity().sub(temp1).add(temp2);
s2.getVelocity().sub(temp2).add(temp1);

}

Problem with Heap Allocation

Created/deleted every frame



� C++ can put objs on stack
� Object deleted at end of call
� No GC computation at all
� Good for short-life objects

� Java can approximate this
� Checks if local to function
� If so, will delete it

� But not a perfect solution
� Can never return object
� Init has hidden costs

void getCollides(Shell s1, Shell s2) {
// Find collision axis
Vector2 axis = new 

Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 
axis.nor();
axis.scale(s1.getRadius());

// Find collision location
Vector2 spot = new 

Vector2(s1.getPosition());
spot.add(axis);

return spot;
}

Aside: Stack Based Allocation



� C++ can put objs on stack
� Object deleted at end of call
� No GC computation at all
� Good for short-life objects

� Java can approximate this
� Checks if local to function
� If so, will delete it

� But not a perfect solution
� Can never return object
� Init has hidden costs

void getCollides(Shell s1, Shell s2) {
// Find collision axis
Vector2 axis = new 

Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 
axis.nor();
axis.scale(s1.getRadius());

// Find collision location
Vector2 spot = new 

Vector2(s1.getPosition());
spot.add(axis);

return spot;
}

Aside: Stack Based Allocation

Deleted

Not 
Deleted



Aside: Java Garbage Collection

� Parallel Garbage Collector (The Default)
� Freezes your application when it collects

� Serial Garbage Collector (-XX:+UseSerialGC)
� Like PGC but better for simple programs

� CMS Garbage Collector (-XX:+UseParNewGC)
� Concurrent mark-and-sweep rarely freezes app

� G1 Garbage Collector (-XX:+UseG1GC)
� Even less app freezing at cost of large heap size



Aside: Java Garbage Collection

� Parallel Garbage Collector (The Default)
� Freezes your application when it collects

� Serial Garbage Collector (-XX:+UseSerialGC)
� Like PGC but better for simple programs

� CMS Garbage Collector (-XX:+UseParNewGC)
� Concurrent mark-and-sweep rarely freezes app

� G1 Garbage Collector (-XX:+UseG1GC)
� Even less app freezing at cost of large heap size

Andrew Myer’s preferred GC 
for high performance Java



Memory Organization and Games

Update

Draw

Intra-Frame
Memory

Recovered
each frame

Inter-Frame
Memory

Carries over 
across frame
boundaries



Memory Organization and Games

Update

Draw

Intra-Frame
Memory

Recovered
each frame

Inter-Frame
Memory

Carries over 
across frame
boundaries

Heap or Stack?
Does it matter?



Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes



Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes

Local Variables
Object Fields



Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes

Local Variables
Object Fields

e.g. Collisions
e.g. Pathfinding



Intra-Frame

� Does not need to be kept
� Drop the latest frame
� Restart on frame boundary

� Want size reasonably fixed
� Local variables always are
� Limited # of allocations
� Limit new inside loops

� Make use of cached objects
� Requires careful planning

Handling Game Memory

Inter-Frame

� May need to be saved
� Defines current game state
� May just want level start

� Size is more flexible
� No. of objects is variable
� Subsystems may turn on/off
� User settings may affect

� Preallocate as possible
� Recycle with free lists



� Limit new to constructors
� Identify the object owner
� Allocate in owner constructor

� Example: cached objects
� Look at what algorithm needs
� Allocate all necessary objects
� Algorithm just sets the cache

� Problem: readability
� Naming is key to readability
� But new names = new objects
� Make good use of comments

Rule of Thumb: Limiting new

Model Model Model

SubcontrollerSubcontroller

Root
Controller



� Limit new to constructors
� Identify the object owner
� Allocate in owner constructor

� Example: cached objects
� Look at what algorithm needs
� Allocate all necessary objects
� Algorithm just sets the cache

� Problem: readability
� Naming is key to readability
� But new names = new objects
� Make good use of comments

Model Model Model

SubcontrollerSubcontroller

Root
Controller

allocate

Rule of Thumb: Limiting new



� Limit new to constructors
� Identify the object owner
� Allocate in owner constructor

� Example: cached objects
� Look at what algorithm needs
� Allocate all necessary objects
� Algorithm just sets the cache

� Problem: readability
� Naming is key to readability
� But new names = new objects
� Make good use of comments

private void handleCollision(Shell s1, Shell s2) {
// Find the axis of "collision"
Vector2 axis = new Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 

…

// Compute the projections 
Vector2 temp1 = new Vector2(s2.getPosition());
temp1.sub(s1.getPosition()).nor();
Vector2 temp2 = new Vector2(s1.getPosition());
temp2.sub(s2.getPosition()).nor();

// Compute new velocities
temp1.scl(temp1.dot(s1.getVelocity()));
temp2.scl(temp2.dot(s2.getVelocity()));

// Apply to the objects 
s1.getVelocity().sub(temp1).add(temp2);
s2.getVelocity().sub(temp2).add(temp1);

}

Rule of Thumb: Limiting new



� Limit new to constructors
� Identify the object owner
� Allocate in owner constructor

� Example: cached objects
� Look at what algorithm needs
� Allocate all necessary objects
� Algorithm just sets the cache

� Problem: readability
� Naming is key to readability
� But new names = new objects
� Make good use of comments

private void handleCollision(Shell s1, Shell s2) {
// Find the axis of "collision"
axis.set(s1.getPosition());
axis.sub(s2.getPosition()); 

…

// Compute the projections 
temp1.set(s2.getPosition());
temp1.sub(s1.getPosition()).nor();
temp2.set(s1.getPosition());
temp2.sub(s2.getPosition()).nor();

// Compute new velocities
temp1.scl(temp1.dot(s1.getVelocity()));
temp2.scl(temp2.dot(s2.getVelocity()));

// Apply to the objects 
s1.getVelocity().sub(temp1).add(temp2);
s2.getVelocity().sub(temp2).add(temp1);

}

Rule of Thumb: Limiting new



� Idea: Allocate before need
� Compute maximum needed
� Create a list of objects
� Allocate contents at start
� Pull from list when neeeded

� Problem: Running out
� Eventually at end of list
� Want to reuse older objects
� Easy if deletion is FIFO
� But what if it isn’t?

� Motivation for free list

// Allocate all of the particles
Particle[] list =new Particle[CAP];
for(int ii = 0; ii < CAP; ii++) {

list[ii] = new Particle();
}

// Keep track of next particle
int next = 0;

…

// Need to “allocate” particle
Particle p = list[next++];
p.set(…);

Object Preallocation



� Create an object queue
� Separate from preallocation
� Stores objects when “freed”

� To allocate an object…
� Look at front of free list
� If object there take it
� Otherwise make new object

� Preallocation unnecessary
� Queue wins in long term
� Main performance hit is 

garbage collector

// Free the new particle
freelist.push(p);

…

// Allocate a new particle
Particle q;

if (!freelist.isEmpty()) {
q = freelist.pop();

} else {
q = new Particle();

}

q.set(…)

Free Lists



Pool<T>

� public void free(T obj);
� Add an object to free list

� public T obtain(); 
� Use this in place of new
� If object on free list, use it
� Otherwise make new object

� public T newObject();
� Rule to create a new object
� Could be preallocated

LibGDX Support: Pool

Pool.Poolable

� public void reset();
� Erases the object contents
� Used when object freed

� Must be implemented by T
� Parameter free constructors
� Set contents with initializers

� See MemoryPool demo
� Also PooledList in Lab 4



Summary

� Memory usage is always an issue in games
� Uncompressed images are quite large
� Uncompressed sound files are even worse

� LibGDX supports modular asset loading
� Loader class directs how to load asset
� GDIAC parser reads data from JSON file

� Limit calls to new in your animation frames
� Intra-frame objects: cached objects
� Inter-frame objects: free lists


