Lecture 24

Level Design
Do We Really Need Level Design?

- Level design makes sense for single player games

- What if our game is *open world*?
 - Each location is a level
 - All that changes is the transition

- What if our game is *multiplayer*?
 - Are the maps always the same?
 - What about game modes?

- What if is a *strategic card game* (e.g. *Magic*)?
 - Are all the cards available at start?
 - How does someone learn how to play?
What is Level Design?

- Layout of **game geography**
 - Location and relationship of challenges
 - Movement of dynamic features (e.g. NPCs)

- Understanding of **player capabilities**
 - Abilities, mechanics available to the player
 - Assumptions of current player skill level

- Layout of **player progression**
 - How the player should move through the game
 - How the player visualizes this progression
Aspects of Game Design

- Games as **Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- Games as **Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- Games as **Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design
Aspects of Game Design

- **Games as Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- **Games as Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- **Games as Storytelling**
 - Focuses on player progression
 - Most challenging element of game design

Not in this Lecture
Aspects of Game Design

• **Games as Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

• **Games as Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

• **Games as Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design

Not in this Lecture
Players Want to Explore the World

- Exploring the **physical space**
 - What happens when I go here?
 - **Example**: Any western RPG
 - But does not require complex game world

- Exploring the **ludic space**
 - What happens when do this action?
 - Requires deep, complex interactions
 - **Example**: Goofing on Bethesda NPCs
Storyboarding

• Diagrams player action throughout level
 • Different from film storyboarding
 • Currently a bunch of informal practices

• Disembodied Action
 • Action corresponding to UI elements
 • Example: Buttons, menus

• Embodied Action
 • Action that is tied to a character/avatar
 • Typically maps player movement in level
Disembodied Action: Cause and Effect

- **Draw the initial scene**
 - Could be the entire level
 - Zoomed in portion of screen
 - Must capture area that will be affected by the action

- **Indicate the action**
 - Draw mouse pointer
 - Indicate gamepad button
 - Annotate with a “tool tip”

- **Draw the action effect**
 - Change in initial scene
Embodied Action: Single Scene
Embodied Action: Multiple Scenes

Point light
Move, Plug in
Move, grab lights

Point light
walk
win.
But There is a Problem

- You are **not** the player!
 - You storyboard what you *think* player will do
 - Player may do something completely *different*!

- Level design is about **constraining** player
 - You design level to force player to do things
 - Challenges are doors blocking progress
 - Player must use skill to open the door

- Storyboarding **maps** these constraints
This is How it Ever Was

- Classic text adventures…
 - Goal is location to reach
 - Locked doors block progress
 - Use actions to unlock doors
- Still design in same way
 - Challenges block the goal
 - Use mechanics to overcome
- Design levels with…
 - Discrete challenges (doors)
 - Put together intelligently
This is How it Ever Was

- Classic text adventures…
 - Goal is location to reach
 - Locked doors block progress
 - Use actions to unlock doors
- Tight Level Design = Tight Challenge Spacing
 - Use mechanics to overcome
- Design levels with…
 - **Discrete challenges** (doors)
 - Put together **intelligently**
Design Patterns

- Design uses building blocks
 - Mechanic/challenge pairs
 - Start and end location
 - String together to make level

- Key building block features
 - Requires verb/interaction
 - Must be possible to *fail*
 - Difficulty is *tunable*

- **Patterns** are common blocks
 - Appear many times in game
 - Even across multiple games
Design Pattern Examples

Platformer

- Tricky Jump

Stealth Game

- Start
- Avoid Detection
Design Pattern Examples

Shooter/Action Game

- Kill Enemies
- Gain Speed
- Cover

Racing Game

- Brake
- Gain Speed
- Cover

Level Design
Dash: Basic Design Patterns
Dash: Putting it All Together
Dash: Putting it All Together

Legend
- Player
- Wanderer
- Shielded
- Chaser
- Shooter
- Object

Tight
- Not Tight
Composite Patterns

• Piecewise design creates a very linear feel
 • Pattern A followed by Pattern B followed by...
 • Player is explicitly aware of building blocks

• Composite patterns allow for variations
 • Two patterns combined in the same space
 • Makes original pattern much more difficult
 • Player now has to react to them both

• Reading: Extended/Evolutionary Challenge
Composite Patterns

Platformer

Interceptor

Force Jump

Stealth Game

Chaser
Composite Patterns

Shooter/Action Game

- Cover
- Cover
- Cover
- Cover Busters
- GRENADE!

Racing Game

- Cover
- Restrict Positions
Is Linearity a Problem?

[Image attribution unknown]

FPS map design

1993

2010

Level Design
But Actually…

[refugeinaudacity.wordpress.com]
But Actually…

Complaint is not **linearity**; it is **tightness**

[refugeinaudacity.wordpress.com]
Aspects of Game Design

- **Games as Exploration**
 - Focuses on game *geography* and *capabilities*
 - Typically involves heavy storyboarding

- **Games as Education**
 - Train player skill and understanding
 - Focuses primarily on *player capabilities*

- **Games as Storytelling**
 - Focuses on *player progression*
 - Most challenging element of game design
Learning How to Play

• Mechanics are (often) new and unfamiliar
 • Players have to learn how to interact with them
 • Aside: why innovation is not always popular

• Players could learn by reading the *manual*
 • This is boring! Let me play already

• *Tutorial levels* allow the player to…
 • Get started playing immediately
 • Learn the mechanics while playing
Classic Approach: Restrict the Player

- Start with your **gameplay specification**
 - Remove all but the barest mechanics
 - Remove verbs by disabling controls
 - Remove interactions by omitting "board elements"

- Levels add new mechanics back one at a time
 - **Example**: Platformer with a "no-jump" level

- Do not need to add a new mechanic each level
 - "Deep" mechanics allow many levels per mechanic
 - This can influence game geography (e.g. worlds)
Example: Starcraft Campaign
Explicit Restrictions

- Mechanics are unavailable for current level
 - Controls for actions are explicitly disabled
 - Interactions disabled, even if elements present

- **Motivation**: Prevents player confusion
 - Do not waste time on useless mechanics
 - Key in the casual and young audience

- **Examples**: Many AAA commercial games
 - *Starcraft* single-player campaign
 - *Portal* (integrated into story)
Implicit Restrictions

• Mechanics are always available, but not needed
 • Challenges designed for an explicit mechanic
 • Other mechanics may succeed, but they are harder
 • Level has hints to guide player to right mechanic

• **Motivation**: Allow replay in tutorial levels
 • Players go back and try optional approaches
 • Achievements are structured to encourage this

• **Example**: Many amateur Flash games
 • *My First Quantum Translocator*
The Tyranny of Choice

● Too much choice can make us unhappy
 ● We are often paralyzed by what to do
 ● Studied by Myers & Lane; popularized by Barry Schwartz

● But games are about meaningful choice
 ● Problem is when choices are too similar
 ● Good choices must be significantly different
 ● Example: Dagger adds +1 bonus to a stat of 102

● Players use rough heuristics for making choices
 ● Pattern match current situation to determine action
The Tyranny of Choice

- Too much choice can make us unhappy
 - We are often paralyzed by what to do
 - Studied by Myers & Lane; popularized by Barry Schwartz

- But choices must be
 - Significant
 - Good choices must be significantly different
 - Example: Dagger adds +1 bonus to a stat of 102

- Players use rough heuristics for making choices
 - Pattern match current situation to determine action

Limiting choice helps train player
Portal 2 Mechanics

Level Mechanic

Level Design
Recombination

New Mechanics

Mechanics

Introduction

Variation

Grab

Portals

Weighted Storage Cube

Heavy Duty Super Colliding Super Button

Emancipation Grill

Switches

Panels

Momentum

Toxic Water

Thermal Discouragement Beam

Discouragement Redirection Cube

Unstationary Scaffold or Victory Lift

Grab with Portal Device

Single Portal Device

Dual Portal Device

Multiple cubes

Multiple buttons

Timed switches

Multiple beams
Reinforcement

How long to “dwell” on mechanic before a new one?

Actions:
A = jump B = dash

A B vs. A A A A B
Recombination

How often to combine with other mechanics

Actions:
A = jump B = dash C = shoot fireball

A B C vs. A AB ABC
Reinforcement vs. Recombination

Reinforcement

A A A B B B
A B C D E

Recombination

A A B B AB AB
A AB ABC
ABC D ABCDE
Robot Unicorn Attack

Level Design
Robot Unicorn Attack Progression

Mechanics:

A = jump B = dash

A A A A B A B A A A A B B

High reinforcement, low recombination
Hello Worlds!
Hello Worlds!
Hello Worlds

Mechanics:
A = move B = two worlds C = close world

A AB AB ABC ABC

Moderate reinforcement, high recombination
Starcraft
Starcraft

A AB ABC ABCD

Low reinforcement, high recombination

A B C D

A A A A
Summary

• Level design is always important
 • How keep your game different, lively?
 • How do you train your player?

• Level design uses geographic constraints
 • Create challenges by defining design patterns
 • Storyboard so player must go through challenges

• Level design uses ludic constraints
 • Do not introduce all of your capabilities at once
 • Leverage reinforcement and recombination