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Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)

� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?

Physics Overview2
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Class Body

Class Fixture
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� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

Collisions4

Body in Box2D

Body
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Body in Box2D

Linear
Velocity

Position

Angular
Velocity
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� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

� Kinematic is rarely useful
� Limited collision detection
� Only collides w/ dynamics
� Does not bounce or react

� Application: Bullets
� Light, fast-moving objects
� Should not bounce
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Body in Box2D

Looks like
last lecture
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Forces

� Instantaneous push
� To be applied over time
� Gradually accelerates
� Momentum if sustained
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Forces vs. Impulses

Impulses

� Push with duration
� To be applied in one frame
� Quickly accelerates
� Immediate momentum

ImpulseImpulse = Force x Time
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Forces vs. Impulses

Impulses

� Push with duration
� To be applied in one frame
� Quickly accelerates
� Immediate momentum

ImpulseImpulse = Force x 1 Sec

in Box2D
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� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform
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Four Ways to Move a Dynamic Body

ForceTorque
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� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

� Great for joints, complex shapes
� Laggy response to user input
� A bit hard to control

� Great for joints, complex shapes
� Good response to user input
� Extremely hard to control

� Bad for joints, complex shapes
� Excellent response to user input
� Very easy to control

� Completely ignores physics!
� Very easy to control
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Four Ways to Move a Dynamic Body
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Example: Box2D Demo

Collisions11
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Example: Box2D Demo
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Controls:

� WASD for linear force

� Left-right arrows to rotate

� 9 or 0 to change controls
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� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform
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Four Ways to Move a Dynamic Body

Must Cap Velocity
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Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

}

Collisions14
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Multiple times to 
improve accuracy
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Multiple times to 
improve accuracy

Only before 
first iteration!
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Shape

� Stores the object geometry
� Boxes, circles or polygons
� Must be convex!

� Has own coordinate space
� Associated body is origin
� Unaffected if body moved
� Cannot be resized later

� Also stores object density
� Mass is area x density
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Collision Objects in Box 2D

Fixture

� Attaches a shape to a body
� Fixture has only one body
� Bodies have many fixtures

� Cannot change the shape
� Must destroy old fixture
� Must make a new fixture

� Has other properties
� Friction: stickiness
� Restitution: bounciness
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// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

Collisions18

Making a Box2D Physics Object
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Making a Box2D Physics Object

Optimized Allocation

Normal Allocation
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// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);
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Making a Box2D Physics Object
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Making a Box2D Physics Object

Other shapes possible

Also set friction and 
restitution parameters

Reason for separating
Fixture & Body classes
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Making a Box2D Physics Object
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Observations on Fixture Parameters

� Density can be anything non-zero
� The higher the density the higher the mass
� Heavier objects are harder to move

� Friction should be within 0 to 1
� Can be larger, but effects are unpredictable
� Affects everything, even manual velocity control

� Restitution should be within 0 to 1
� A value of 0 means no bounciness at all
� Unpredictable with manual velocity control

Collisions23
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Example: Box2D Demo
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Example: Box2D Demo
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Controls:

� 1 or 2 to change density

� 3 or 4 to change friction

� 5 or 6 to change restitution

� 7 or 8 to change shape
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� Do not try to learn boundary
� Image recognition is hard

� Hull will have many sides

� Have artists draw the shape
� Cover shape with triangles

� But can ignore interiors

� Keep # sides small!

� Store shape in another file
� Do not ruin the art!

� Need coordinates as data

Collisions26

How Do We Find the Shape?
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character.jpg
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Data-Driven Design

character.shape
120,2
130,4
125,50
150,65
160,100
150,110
125,80
140,200
130,200
120,110
…
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Custom Collisions: ContactListeners

� Special listener attached to world object
� Reacts to any two fixtures that collide
� Allow you to override collision behavior
� Or you can augment collision behavior

� Two primary methods in interface
� beginContact: When objects first collide
� endContact: When objects no longer collide

� Example: Color changing in Box2D demo

Collisions28
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Issues with Collisions: Tunneling

� Collisions in midstep can lead to tunneling
� Objects that “pass through” each other
�Not colliding at start or end of simulation
�But they collided somewhere in between

� This is an example of a false negative

� This is a serious problem; cannot ignore
� Players getting places they shouldn’t
� Players missing an event trigger boundary

Collisions29
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Tunneling
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Tunneling: Observations

� Small objects tunnel more easily

� Fast-moving objects tunnel more easily

Collisions31
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Possible Solutions to Tunnelling

� Minimum size requirement?
� Fast objects still tunnel

� Maximum speed limit?
� Speed limit is a function of object size
� So small & fast objects (bullets) not allowed

� Smaller time step?
� Essentially the same as a speed limit

� All of these solutions are inadequate
Collisions33
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� Bounds contain motion
� “Cylinder” w/ shape at ends
� Object always in bounds
� Convex if shape is convex

� New collision checking
� Put shapes at start and end
� Create swept shape for pair
� Check for collisions

� Can have false positives
� Swept shape ignores time

Collisions34

Swept Shapes
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Swept Shapes
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� False positives happen if:
� Two objects are moving

� Swept shapes intersect at 
different intersection times

� What if only one moving?
� Swept intersects stationary

� So no false positives

� Change reference frames
� Keep one shape still

� Move other in new coords

Collisions36

Swept Shapes & Relative Coordinates

Inertial Frame
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Red Frame

� False positives happen if:
� Two objects are moving

� Swept shapes intersect at 
different intersection times

� What if only one moving?
� Swept intersects stationary

� So no false positives

� Change reference frames
� Keep one shape still

� Move other in new coords
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Swept Shapes & Relative Coordinates

Blue Frame
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Red Frame

� False positives happen if:
� Two objects are moving
� Swept shapes intersect at 

different intersection times

� What if only one moving?
� Swept intersects stationary
� So no false positives

� Change reference frames
� Keep one shape still
� Move other in new coords
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Swept Shapes & Relative Coordinates

Blue Frame

How “Bullets” are handled
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� Relative coordinates no help

� Cannot use swept shapes

� Actual solution is hard!

� But not so bad…

� Angular tunneling looks ok

� Speed limits are feasible

� Do linear approximations

� Many physics systems 
never handle this well

Collisions39

Rotations Suck
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� Joints connect bodies
� Anchors can be offset body

� Coordinates relative to body 

� Are affected by fixtures
� Fixtures prevent collisions

� Limit relative movement

� Must control with forces
� Manual velocity might 

violate constraints

� Use force or impulse
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Some Words on Joints

Body

Anchor

Rigid

Rigid

Body
Anchor

Joint
(flexible)
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Sample Joint Types

Distance (soft)
Rope (hard)

Revolute Weld
(rigid)

Prismatic Pulley
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Summary

� Physics engines support motion and collisions
� Body class provides the motion

� Fixture, Shape classes are for collisions

� Multiple ways to control a physics object
� Can apply forces or manually control velocity

� Joint constraints work best with forces

� Physics engines do not solve all your problems
� You have manually compute your shapes

� May need to tune parameters to prevent tunneling

Collisions42


