
gamedesigninitiative
at cornell university

the

Box2D Physics

Lecture 18



gamedesigninitiative
at cornell university

the

Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)

� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?

Physics Overview2



gamedesigninitiative
at cornell university

the

Physics in Games

� Moving objects about the screen
� Kinematics: Motion ignoring external forces

(Only consider position, velocity, acceleration)

� Dynamics: The effect of forces on the screen

� Collisions between objects
� Collision Detection: Did a collision occur?

� Collision Resolution: What do we do?

Physics Overview3

Class Body

Class Fixture



gamedesigninitiative
at cornell university

the

� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

Collisions4

Body in Box2D

Body



gamedesigninitiative
at cornell university

the

� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

Collisions5

Body in Box2D

Linear
Velocity

Position

Angular
Velocity



gamedesigninitiative
at cornell university

the

� Represents a single point
� Center of the object’s mass
� Object must move as unit

� Properties in class Body
� Position
� Linear Velocity
� Angular Velocity
� Body Type

� There are 3 body types
� Static: Does not move
� Kinematic: Moves w/o force
� Dynamic: Obeys forces

� Kinematic is rarely useful
� Limited collision detection
� Only collides w/ dynamics
� Does not bounce or react

� Application: Bullets
� Light, fast-moving objects
� Should not bounce

Collisions6

Body in Box2D

Looks like
last lecture



gamedesigninitiative
at cornell university

the

Forces

� Instantaneous push
� To be applied over time
� Gradually accelerates
� Momentum if sustained

Collisions7

Forces vs. Impulses

Impulses

� Push with duration
� To be applied in one frame
� Quickly accelerates
� Immediate momentum

ImpulseImpulse = Force x Time



gamedesigninitiative
at cornell university

the

Forces

� Instantaneous push
� To be applied over time
� Gradually accelerates
� Momentum if sustained

Collisions8

Forces vs. Impulses

Impulses

� Push with duration
� To be applied in one frame
� Quickly accelerates
� Immediate momentum

ImpulseImpulse = Force x 1 Sec

in Box2D



gamedesigninitiative
at cornell university

the

� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

Collisions9

Four Ways to Move a Dynamic Body

ForceTorque



gamedesigninitiative
at cornell university

the

� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

� Great for joints, complex shapes
� Laggy response to user input
� A bit hard to control

� Great for joints, complex shapes
� Good response to user input
� Extremely hard to control

� Bad for joints, complex shapes
� Excellent response to user input
� Very easy to control

� Completely ignores physics!
� Very easy to control

Collisions10

Four Ways to Move a Dynamic Body



gamedesigninitiative
at cornell university

the

Example: Box2D Demo

Collisions11



gamedesigninitiative
at cornell university

the

Example: Box2D Demo

Collisions12

Controls:

� WASD for linear force

� Left-right arrows to rotate

� 9 or 0 to change controls



gamedesigninitiative
at cornell university

the

� Forces
� applyForce (linear)
� applyTorque (angular)

� Impulses
� applyLinearImpulse
� applyAngularImpulse

� Velocity
� setLinearVelocity
� setAngularVelocity

� Translation
� setTransform

Collisions13

Four Ways to Move a Dynamic Body

Must Cap Velocity



gamedesigninitiative
at cornell university

the

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

}

Collisions14



gamedesigninitiative
at cornell university

the

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

}

Collisions15

Multiple times to 
improve accuracy



gamedesigninitiative
at cornell university

the

Basic Structure of a Update Loop

public void update(float dt) {
// Apply movement to relevant bodies
if (body above or equal to max velocity) { 

body.setLinearVelocity(maximum velocity);
} else {

body.applyForce(force)
body.applyTorque(torque)

}
// Use physics engine to update positions
world.step(dt,vel_iterations,pos_iterations);

}

Collisions16

Multiple times to 
improve accuracy

Only before 
first iteration!



gamedesigninitiative
at cornell university

the

Shape

� Stores the object geometry
� Boxes, circles or polygons
� Must be convex!

� Has own coordinate space
� Associated body is origin
� Unaffected if body moved
� Cannot be resized later

� Also stores object density
� Mass is area x density

Collisions17

Collision Objects in Box 2D

Fixture

� Attaches a shape to a body
� Fixture has only one body
� Bodies have many fixtures

� Cannot change the shape
� Must destroy old fixture
� Must make a new fixture

� Has other properties
� Friction: stickiness
� Restitution: bounciness



gamedesigninitiative
at cornell university

the

// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

Collisions18

Making a Box2D Physics Object



gamedesigninitiative
at cornell university

the

// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

Collisions19

Making a Box2D Physics Object

Optimized Allocation

Normal Allocation



gamedesigninitiative
at cornell university

the

// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);

Collisions20

Making a Box2D Physics Object



gamedesigninitiative
at cornell university

the

// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);

Collisions21

Making a Box2D Physics Object

Other shapes possible

Also set friction and 
restitution parameters

Reason for separating
Fixture & Body classes



gamedesigninitiative
at cornell university

the

// Create a body definition 
// (this can be reused)
bodydef = new BodyDef();
bodydef.type = type;
bodydef.position.set(position);
bodydef.angle = angle;

// Allocate the body
body1 = world.createBody(bodydef);

// Another?
bodydef.position.set(position2);
body2 = world.createBody(bodydef);

// Create two triangles as shapes
shape1 = new PolygonShape().;
shape2 = new PolygonShape();
shape1.set(verts1); shape2.set(verts2);

// Create a fixture definition
fixdef = new FixtureDef();
fixdef.density = density;

// Attach the two shapes to body
fixdef.shape = shape1;
fixture1 = body1.createFixture(fixdef);
fixdef.shape = shape2;
fixture2 = body1.createFixture(fixdef);

Collisions22

Making a Box2D Physics Object



gamedesigninitiative
at cornell university

the

Observations on Fixture Parameters

� Density can be anything non-zero
� The higher the density the higher the mass
� Heavier objects are harder to move

� Friction should be within 0 to 1
� Can be larger, but effects are unpredictable
� Affects everything, even manual velocity control

� Restitution should be within 0 to 1
� A value of 0 means no bounciness at all
� Unpredictable with manual velocity control

Collisions23



gamedesigninitiative
at cornell university

the

Example: Box2D Demo

Collisions24



gamedesigninitiative
at cornell university

the

Example: Box2D Demo

Collisions25

Controls:

� 1 or 2 to change density

� 3 or 4 to change friction

� 5 or 6 to change restitution

� 7 or 8 to change shape



gamedesigninitiative
at cornell university

the

� Do not try to learn boundary
� Image recognition is hard

� Hull will have many sides

� Have artists draw the shape
� Cover shape with triangles

� But can ignore interiors

� Keep # sides small!

� Store shape in another file
� Do not ruin the art!

� Need coordinates as data

Collisions26

How Do We Find the Shape?



gamedesigninitiative
at cornell university

the

character.jpg

Collisions27

Data-Driven Design

character.shape
120,2
130,4
125,50
150,65
160,100
150,110
125,80
140,200
130,200
120,110
…



gamedesigninitiative
at cornell university

the

Custom Collisions: ContactListeners

� Special listener attached to world object
� Reacts to any two fixtures that collide
� Allow you to override collision behavior
� Or you can augment collision behavior

� Two primary methods in interface
� beginContact: When objects first collide
� endContact: When objects no longer collide

� Example: Color changing in Box2D demo

Collisions28



gamedesigninitiative
at cornell university

the

Issues with Collisions: Tunneling

� Collisions in midstep can lead to tunneling
� Objects that “pass through” each other
�Not colliding at start or end of simulation
�But they collided somewhere in between

� This is an example of a false negative

� This is a serious problem; cannot ignore
� Players getting places they shouldn’t
� Players missing an event trigger boundary

Collisions29



gamedesigninitiative
at cornell university

the

Collisions30

Tunneling



gamedesigninitiative
at cornell university

the

Tunneling: Observations

� Small objects tunnel more easily

� Fast-moving objects tunnel more easily

Collisions31



gamedesigninitiative
at cornell university

the

Tunneling: Observations

� Small objects tunnel more easily

� Fast-moving objects tunnel more easily

Collisions32



gamedesigninitiative
at cornell university

the

Possible Solutions to Tunnelling

� Minimum size requirement?
� Fast objects still tunnel

� Maximum speed limit?
� Speed limit is a function of object size
� So small & fast objects (bullets) not allowed

� Smaller time step?
� Essentially the same as a speed limit

� All of these solutions are inadequate
Collisions33



gamedesigninitiative
at cornell university

the

� Bounds contain motion
� “Cylinder” w/ shape at ends
� Object always in bounds
� Convex if shape is convex

� New collision checking
� Put shapes at start and end
� Create swept shape for pair
� Check for collisions

� Can have false positives
� Swept shape ignores time

Collisions34

Swept Shapes



gamedesigninitiative
at cornell university

the

� Bounds contain motion
� “Cylinder” w/ shape at ends
� Object always in bounds
� Convex if shape is convex

� New collision checking
� Put shapes at start and end
� Create swept shape for pair
� Check for collisions

� Can have false positives
� Swept shape ignores time

Collisions35

Swept Shapes



gamedesigninitiative
at cornell university

the

� False positives happen if:
� Two objects are moving

� Swept shapes intersect at 
different intersection times

� What if only one moving?
� Swept intersects stationary

� So no false positives

� Change reference frames
� Keep one shape still

� Move other in new coords

Collisions36

Swept Shapes & Relative Coordinates

Inertial Frame



gamedesigninitiative
at cornell university

the

Red Frame

� False positives happen if:
� Two objects are moving

� Swept shapes intersect at 
different intersection times

� What if only one moving?
� Swept intersects stationary

� So no false positives

� Change reference frames
� Keep one shape still

� Move other in new coords

Collisions37

Swept Shapes & Relative Coordinates

Blue Frame



gamedesigninitiative
at cornell university

the

Red Frame

� False positives happen if:
� Two objects are moving
� Swept shapes intersect at 

different intersection times

� What if only one moving?
� Swept intersects stationary
� So no false positives

� Change reference frames
� Keep one shape still
� Move other in new coords

Collisions38

Swept Shapes & Relative Coordinates

Blue Frame

How “Bullets” are handled



gamedesigninitiative
at cornell university

the

� Relative coordinates no help

� Cannot use swept shapes

� Actual solution is hard!

� But not so bad…

� Angular tunneling looks ok

� Speed limits are feasible

� Do linear approximations

� Many physics systems 
never handle this well

Collisions39

Rotations Suck



gamedesigninitiative
at cornell university

the

� Joints connect bodies
� Anchors can be offset body

� Coordinates relative to body 

� Are affected by fixtures
� Fixtures prevent collisions

� Limit relative movement

� Must control with forces
� Manual velocity might 

violate constraints

� Use force or impulse

Collisions40

Some Words on Joints

Body

Anchor

Rigid

Rigid

Body
Anchor

Joint
(flexible)



gamedesigninitiative
at cornell university

the

Collisions41

Sample Joint Types

Distance (soft)
Rope (hard)

Revolute Weld
(rigid)

Prismatic Pulley



gamedesigninitiative
at cornell university

the

Summary

� Physics engines support motion and collisions
� Body class provides the motion

� Fixture, Shape classes are for collisions

� Multiple ways to control a physics object
� Can apply forces or manually control velocity

� Joint constraints work best with forces

� Physics engines do not solve all your problems
� You have manually compute your shapes

� May need to tune parameters to prevent tunneling

Collisions42


