
gamedesigninitiative
at cornell university

the

Architecture Design

Lecture 11

gamedesigninitiative
at cornell university

the

Take Away for Today

� What should the lead programmer do?

� How do CRC cards aid software design?
� What goes on each card?
� How do you lay them out?
� What properties should they have?

� How do activity diagrams aid design?
� How do they relate to CRC cards?

� Difference between design & documentation
Architecture Design2

gamedesigninitiative
at cornell university

the

Role of Lead Programmer

� Make high-level architecture decisions
� How are you splitting up the classes?
� What is your computation model?
� What is stored in the data files?
� What third party libraries are you using?

� Divide the work among the programmers
� Who works on what parts of the game?
� What do they need to coordinate?

Architecture Design3

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Architecture Design4

gamedesigninitiative
at cornell university

the

Identify Modules (Subsystems)

� Modules: logical unit of functionality
� Often reusable over multiple games
� Implementation details are hidden
� API describes interaction with rest of system

� Natural way to break down work
� Each programmer decides implementation
� But entire team must agree on the API
� Specification first, then programming

Architecture Design5

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Architecture Design6

Subsystem
or

Module
API

gamedesigninitiative
at cornell university

the

Example: Physics Engines

� API to manipulate objects
� Put physics objects in “container”
� Specify their connections (e.g. joints)
� Specify forces, velocity

� Everything else hidden from user
� Collisions detected by module
� Movement corrected by module

Architecture Design7

gamedesigninitiative
at cornell university

the

Relationship Graph

� Shows when one module “depends” on another
� Module A calls a method/function of Module B
� Module A creates/loads instance of Module B

� General Rule: Does A need the API of B?
� How would we know this?

Architecture Design8

Module 1 does not “need” to know about Module 3

Module 3Module 1 Module 2

gamedesigninitiative
at cornell university

the

Relationship Graph

� Edges in relationship graph are often directed
� If A calls a method of B, is B aware of it?

� But often undirected in architecture diagrams
� Direction clear from other clues (e.g. layering)
� Developers of both modules should still agree on API

Architecture Design9

Module 3Module 1 Module 2

Does Module 1 need to know about Module 2?

gamedesigninitiative
at cornell university

the

� Each programmer has a module
� Programmer owns the module

� Final word on implementation

� Owners collaborate w/ neighbors
� Agree on API at graph edges
� Call meetings “Interface Parties”

� Works, but…
must agree on modules and
responsibilities ahead of time

Architecture Design10

Dividing up Responsibilities

Module 3

Module 1

Module 2

Owner:
Bob

Owner:
Anne

Owner:
Doug

gamedesigninitiative
at cornell university

the

� Can do this recursively
� Module is a piece of software
� Can break into more modules

� Nested APIs are internal
� Only needed by module owner
� Parent APIs may be different!

� Critical for very large groups
� Each small team gets a modules
� Inside the team, break up further
� Even deeper hierarchies possible

Architecture Design11

Nested (Sub)modules

Module 1

Module 2

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Architecture Design12

Nested
Module

gamedesigninitiative
at cornell university

the

How Do We Get Started?

� Remember the design caveat:
� Must agree on module responsibilities first
� Otherwise, code is duplicated or even missing

� Requires a high-level architecture plan
� Enumeration of all the modules
� What their responsibilities are
� Their relationships with each other

� Responsibility of the lead architect
Architecture Design13

gamedesigninitiative
at cornell university

the

Design: CRC Cards

� Class-Responsibility-Collaboration
� Class: Important class in subsystem
� Responsibility: What that class does
� Collaboration: Other classes required
�May be part of another subsystem

� English description of your API
� Responsibilities become methods
� Collaboration identifies dependencies

Architecture Design14

gamedesigninitiative
at cornell university

the

Scene Model
Responsibility Collaboration

Enumerates game objects in scene Game Object
Adds/removes game objects to scene Game Object
Selects object at mouse location Mouse Event, Game Object

CRC Card Examples

AI Controller
Responsibility Collaboration

Pathfinding: Avoiding obstacles Game Object, Scene Model
Strategic AI: Planning future moves Player Model, Action Model
Character AI: NPC personality Game Object, Level Editor Script

Architecture Design15

gamedesigninitiative
at cornell university

the

Scene Model
Responsibility Collaboration

Enumerates game objects in scene Game Object
Adds/removes game objects to scene Game Object
Selects object at mouse location Mouse Event, Game Object

CRC Card Examples

AI Controller
Responsibility Collaboration

Pathfinding: Avoiding obstacles Game Object, Scene Model
Strategic AI: Planning future moves Player Model, Action Model
Character AI: NPC personality Game Object, Level Editor Script

Architecture Design16

Class
NameController

Model

gamedesigninitiative
at cornell university

the

� Start with MVC Pattern

� Gives 3 basic subsystems

� List responsibilities of each

� May be all that you need

(TemperatureConverter)

� Split up a module if

� Too much for one person

� API for module too long

� Don’t need to nest (yet)
� Perils of ravioli code

Architecture Design17

Creating Your Cards

Module
Responsibility Collaboration

… …

… …

… …

… …

… …

… …

… …

… …

gamedesigninitiative
at cornell university

the

� Start with MVC Pattern

� Gives 3 basic subsystems

� List responsibilities of each

� May be all that you need

(TemperatureConverter)

� Split up a module if

� Too much for one person

� API for module too long

� Don’t need to nest (yet)
� Perils of ravioli code

Architecture Design18

Creating Your Cards

Module 1
Responsibility Collaboration

… …

… …

… …

Module 2
Responsibility Collaboration

… …

… …

… …

gamedesigninitiative
at cornell university

the

Application Structure

Architecture Design19

Model Model Model

SubcontrollerSubcontroller

Root
Controller

View

Collaboration

Ownership

gamedesigninitiative
at cornell university

the

Application Structure

Architecture Design20

Model Model Model

SubcontrollerSubcontroller

Root
Controller

View

Ownership

Collaboration

� Collaboration
� Must import class/interface
� Instantiates an object OR
� Calls the objects methods

� Ownership
� Instantiated the object
� Superset of collaboration

gamedesigninitiative
at cornell university

the

Architecture Design21

Avoid Cyclic Collaboration

Y X
collaborates

with

collaborates
with Y X

Z

collaborates
with

Controller

gamedesigninitiative
at cornell university

the

� Example: Lab 3
� Ship fires projectiles
� Must add to game state

� Originally all in model
� Ship referenced game state
� And game state stored ship
� Cyclic Reference

� We added a new controller
� It references game state
� Only it adds to game state
� Cycle broken

Architecture Design22

Avoid Cyclic Collaboration

Ship.java

Game State

gamedesigninitiative
at cornell university

the

� Example: Lab 3
� Ship fires projectiles
� Must add to game state

� Originally all in model
� Ship referenced game state
� And game state stored ship
� Cyclic Reference

� We added a new controller
� It references game state
� Only it adds to game state
� Cycle broken

Architecture Design23

Avoid Cyclic Collaboration

Ship.javaGame State

GameplayController.java

gamedesigninitiative
at cornell university

the

� Relationships are for APIs
� Implementation not relevant
� Can be class or interface

� Interfaces can break cycles
� Start with single class
� Break into many interfaces
� Refer to interface, not class

� Needed if actions in model
� Abstracts game state
� Hides all but relevant data

Architecture Design24

Alternative: Interfaces

Ship.java

Game State

GameplayController.java

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Architecture Design25

Simple (Planar) Graph

gamedesigninitiative
at cornell university

the

Architecture Design26

CRC Index Card Exercise

Class 1
Responsibility Collaboration

… Class 2

… Class 3

… Class 4

Class 2
Responsibility Collaboration

… …

… …

… …

Class 3
Responsibility Collaboration

… …

… …

… …

Class 4
Responsibility Collaboration

… …

… …

… …

Try to make
collaborators

adjacent

If cannot do this, time
to think about nesting!

gamedesigninitiative
at cornell university

the

Designing Class APIs

Architecture Design27

Scene Model
Responsibility Method

Enumerates game objects Iterator<GameObject> enumObjects()

Adds game objects to scene void addObject(gameObject)

Removes objects from scene void removeObject(gameObject)

Selects object at mouse GameObject getObject(mouseEvent)

� Make classes formal

� Turn responsibilities into methods

� Turn collaboration into parameters

gamedesigninitiative
at cornell university

the

Documenting APIs

� Use a formal documentation style
� What parameters the method takes
� What values the method returns
� What the method does (side effects)
� How method responds to errors (exceptions)

� Make use of documentation comments
� Example: JavaDoc in Java
� Has become defacto-standard (even used in C++)

Architecture Design28

gamedesigninitiative
at cornell university

the

Documenting API
/**
* Returns an Image object that can then be painted on the screen.
* <p>
* The url argument must specify an absolute {@link URL}. The name argument is a specifier that
* is relative to the url argument.
* <p>
* This method always returns immediately, whether or not the image exists. When this applet
* attempts to draw the image on the screen, the data will be loaded. The graphics primitives that
* draw the image will incrementally paint on the screen.
*
* @param url an absolute URL giving the base location of the image
* @param name the location of image, relative to the url argument
* @return the image at the specified URL
* @see Image
*/
public Image getImage(URL url, String name) {

try {
return getImage(new URL(url, name));

} catch (MalformedURLException e) { return null; } }

Architecture Design29

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

gamedesigninitiative
at cornell university

the

Taking This Idea Further

� UML: Unified Modeling Language
� Often used to specify class relationships
� But expanded to model other things
� Examples: data flow, human users

� How useful is it?
� Extremely useful for documentation
� Less useful for design (e.g. before implementation)
� A language to program in another language

Architecture Design30

gamedesigninitiative
at cornell university

the

Activity Diagrams

� Define the workflow of your program
� Very similar to a standard flowchart
� Can follow simultaneous paths (threads)

� Are an component of UML
� But did not originate with UML
� Mostly derived from Petri Nets
� One of most useful UML design tools

� Activity diagrams are only UML we use
Architecture Design31

gamedesigninitiative
at cornell university

the

Architecture Design32

Activity Diagram Example
Find

Beverage

Add Water
to Reservoir

Get
Cups

Put Filter
in Machine

Turn On
Machine

Get Can
of Cola

Brew
Coffee

Pour
Coffee

Drink
Beverage

Put Coffee
in Filter

[found coffee]

[no coffee] [no cola]

[found cola]

[coffee dispensed]

gamedesigninitiative
at cornell university

the

Architecture Design33

Activity Diagram Example
Find

Beverage

Add Water
to Reservoir

Get
Cups

Put Filter
in Machine

Turn On
Machine

Get Can
of Cola

Brew
Coffee

Pour
Coffee

Drink
Beverage

Put Coffee
in Filter

[found coffee]

[no coffee] [no cola]

[found cola]Start

End

Synch
Bar

Activity

Guard
Decision

[coffee dispensed]

Synch
Condition

gamedesigninitiative
at cornell university

the

� Synchronization Bars
� In: Wait until have happened
� Out: Actions “simultaneous”
� … or order does not matter

� Decisions
� In: Only needs one input
� Out: Only needs one output

� Guards
� When we can follow edge
� * is iteration over container

Architecture Design34

Activity Diagram Components

[if yes] *[for each]

Potential Threads

If-Then Logic

gamedesigninitiative
at cornell university

the

*[for each selected]

Architecture Design35

Asynchronous Pathfinding

Reset
Pathfinder

Find
Path

*

*

Get
Input

Determine
Goal

Measure
to Goal

Move
Object

Draw

*[for each
object]

[all objects
checked]

*[for each object]

[new goal]

[path found]

gamedesigninitiative
at cornell university

the

Architecture Design36

Asynchronous Pathfinding

Reset
Pathfinder

Find
Path

*

*

Get
Input

Determine
Goal

Measure
to Goal

Move
Object

Draw

*[for each selected]
*[for each

object]

[all objects
checked]

*[for each object]

Iteration

Buffer

Task Separator

[new goal]

[path found]

gamedesigninitiative
at cornell university

the

Architecture Design37

Asynchronous Pathfinding

Reset
Pathfinder

Find
Path

*

*

Get
Input

Determine
Goal

Measure
to Goal

Move
Object

Draw

*[for each selected]
*[for each

object]

[all objects
checked]

*[for each object]

Iteration

Buffer

Task Separator

[new goal]

[path found]

Synchronization + Guard
Think of as multiple outgoing
edges (with guard) from bar

gamedesigninitiative
at cornell university

the

Architecture Design38

Expanding Level of Detail

Reset
Pathfinder

Find
Path

*

*

Get
Input

Determine
Goal

Measure
to Goal

Move
Object

Draw

*[for each
object]

[all objects
checked]

*[for each object]

*[for each selected]

[new goal]

[path found]
Draw

Background

Draw
Objects

Draw
HUD

gamedesigninitiative
at cornell university

the

Using Activity Diagrams

� Good way to identify major subsystems
� Each action is a responsibility
� Need extra responsibility; create it in CRC
� Responsibility not there; remove from CRC

� Do activity diagram first?
� Another iterative process
� Keep level of detail simple
� Want outline, not software program

Architecture Design39

Update

Draw

gamedesigninitiative
at cornell university

the

Architecture Design

� Identify major subsystems in CRC cards
� List responsibilities
� List collaborating subsystems

� Draw activity diagram
� Make sure agrees with CRC cards
� Revise CRC cards if not

� Create class API from CRC cards
� Recall intro CS courses: specifications first!
� But not actually part of specification document

Architecture Design40

gamedesigninitiative
at cornell university

the

Programming Contract

� Once create API, it is a contract
� Promise to team that “works this way”
� Can change implementation, but not interface

� If change the interface, must refactor
� Restructure architecture to support interface
� May change the CRCs and activity diagram
� Need to change any written code

Architecture Design41

gamedesigninitiative
at cornell university

the

Summary

� Architecture design starts at a high level
� Class-responsibilities-collaboration
� Layout as cards to visualize dependencies

� Activity diagrams useful for update loop
� Outline general flow of activity
� Identifies dependencies in the process

� Must formalize class APIs
� No different from standard Java documentation
� Creates a contract for team members

Architecture Design42

gamedesigninitiative
at cornell university

the

Where to From Here?

� Later lectures fill in architecture details
� Data-Driven Design: Data Management
� 2D Graphics: Drawing
� Physics Engines: Collisions, Forces
� Character AI: Sense-Think-Act cycle
� Strategic AI: Asynchronous AI
� Networking (at end of course)

� But there is more design coming too

Architecture Design43

