Lecture 8

Prototyping
What is a Prototype?

- An *incomplete* model of your product
- Implements small subset of the final features
- Features chosen are the most important *now*

- Prototype helps you visualize *gameplay*
- Way for you to test a new game mechanic
- Allows you to tune mechanic parameters
- Can also test (some) user interfaces
What is a Prototype?

- A prototype helps you visualize **subsystems**
 - Custom lighting algorithms
 - Custom physics engine
 - Network communication layer

- Fits naturally with the SCRUM sprint
 - Identify the core mechanic/subsystem to test
 - Develop subsystem separately in sprint
 - If successful, integrate into main code
Types of Prototypes

- **Throwaway prototyping**
 - Prototype will be discarded after use
 - Often created with middleware/prototyping tool
 - Useful for *gameplay prototype*

- **Evolutionary Prototyping**
 - Robust prototype that is refined over time
 - Code eventually integrated into final product
 - Useful for your *technical prototype*
Case Study: Playing Fields

• Computer map aid for playing D&D
 • Provides a map grid for moving tokens about
 • Tools for creating tokens and images
 • Network support for a DM with many players
 • Intelligently obscures player visibility

• Motivation: lessen player “metagaming”
 • Physical map displays too much information
 • Playing over a network is a secondary concern
Case Study: Playing Fields
Gameplay Prototypes

- Focus on core mechanic (e.g. verb/interaction)
 - May want more than one for emergent behavior
 - But no more than 2 or 3 mechanics
 - Keep challenges very, very simple

- Prototype should allow *tuning on the fly*
 - Requiring a recompile to tune is inefficient
 - Use menus/input fields/keyboard commands
 - But do not make the UI too complicated either
Prototyping Playing Fields

• What are the core mechanics?
 • Moving a token about a grid
 • Using obstacles to block visibility

• Focuses on visibility and user control
 • Use a single token with fixed obstructions
 • Do not support network play
 • Do not worry about invalid moves

• Visibility distance is a tunable parameter
Playing Fields Prototype
Prototype: Lessons Learned

- Algorithm makes it difficult to see walls
 - May want unseen area a color other than black
 - May want to “fudge the edge of the boundary”

- Update algorithm does not support “strafing”
 - Vision is updated at start and beginning of move
 - Nothing “in between” is counted (e.g. alleys)

- Spacing of 50 pixels is optimal for viewing
Technical Prototyping

• Technical prototypes used for *subsystems*
 • Custom lighting algorithms
 • Custom physics engine
 • Network communication layer

• **Goal**: inspect inner workings of software
 • Features might be “invisible” in normal game
 • Specialized interface to visualize process

• **Not-a-Goal**: Make something fun
Case Study: Shadows and Lighting

- Recall gameplay prototype
 - Discrete shadows are easy
 - But had many problems
- Want something more robust
 - Continuously movement
 - Curved wall edges
 - Self-intersecting shadows
- Different features to test
 - Moving an avatar
 - Reconfiguring the wall
Case Study: Shadows and Lighting

- Recall gameplay prototype
 - Discrete shadows are easy
 - But had many problems

- Want something more robust
 - Continuously movement
 - Curved wall edges
 - Self-intersecting shadows

- Different features to test
 - Moving an avatar
 - Reconfiguring the wall
Case Study: Shadows and Lighting
Case Study: Agent Movement

- Artificial potential fields
 - Obstacles are repulsive charge
 - Goal is an attractive charge
 - Sum together to get velocity
- Fast real-time movement
 - No hard AI algorithms
 - But has other problems…
- Will cover later in class
 - See *Pathfinding* in schedule
Case Study: Agent Movement

Prototyping

Instructions:
To create a new vehicle, Control-click on its desired position. Use a regular click to select an existing vehicle for editing. A selected vehicle is indicated by a heavier border.

Only one vehicle may be selected at a time. A selected vehicle is pinned and will not move, but will still exert a force for avoidance.
Case Study: Agent Movement

- Make subsystem robust (evolutionary prototype)
- Make interface simple (throwaway prototype)
- Support controls to change parameters on fly
Case Study: Forgotten Sky

Prototyping
Nondigital Prototypes
Digital or Nondigital?

Digital Prototypes

- Advantages
 - Closer to final design
 - Input and control semantics
 - Great for complex systems (e.g. physics)

- Disadvantages
 - Shuts out non-programmers
 - Longer development time

Nondigital Prototypes

- Advantages
 - Fast to create, iterate design
 - Used by non-programmers
 - Great for resources and game economy

- Disadvantages
 - Input and player control
 - Complex systems
Lessons From Nondigital Prototypes

- Evaluate emergent behavior
 - Allow player to commit simultaneous actions
 - Model interactions as “board elements”

- Model player cost-benefit analyses
 - Model all resources with sources and sinks
 - Focus on economic dilemma challenges

- Early user testing for player difficulty
 - Ideal for puzzle games (or puzzle element)
 - Can also evaluate unusual interfaces
Prototypes in this Class

- Required to demo three prototypes in class
 - **Nondigital prototype** week from Wednesday
 - **Gameplay prototype** on March 5th
 - **Technical prototype** on March 19th

- Nondigital prototype may be trickiest
 - Keep it simple; avoid a full game
 - Focus on dilemma challenges (e.g. choice)
 - More details in the next lecture
The Gameplay Prototype

- **Throw-away prototype**
 - Does not have to be in Java
 - Can use another language (e.g. C#)
 - Can use authoring tools (e.g. Flash, GameMaker)

- **Goal:** demonstrate gameplay
 - Challenges impossible in nondigital prototype
 - Basic player controls and interface
 - Primary game mechanic
The Technical Prototype

- **Evolutionary prototype**
 - Should be written in Java and LibGDX
 - Most of the code will be reused later
 - Some of code (e.g. interface) can be thrown away

- **Goal**: visualization and tuning
 - Simple interface displaying core functionality
 - Controls (e.g. sliders, console) to change parameters
 - Playtest to figure proper setting of parameters