Lecture 5

Rules and Mechanics
Lecture 5

Rules and Mechanics
Today’s Lecture

- Reading is from Unit 2 of *Rules of Play*
 - Available from library as e-book
 - Linked to from the lecture page
- Not required, but excellent resource
 - Important for the serious designer
 - And ignore the Amazon reviews…
- The “Bible of Game Mechanics”
What are Rules?

- Definition from *Rules of Play*:
 - Rules are *formal schemas*

- But what does this really mean?

- Is it different for digital games?
Challenge of Defining Rules

- They do not need to be *fixed*
 - **Example**: *Nomic* (simulates democratic voting)
 - But are changed in structured ways

- They can *ignored*
 - House-rules that add or remove rules
 - Rule relaxation (e.g. playing with a young child)

- They are not always *explicit*
 - **Example**: does *Battlefield* have rules on camping?
Implicit Rules

• We often consider these **social conventions**
 • If violate them, no one wants to play with you
 • Encapsulate being a “good sport”

• Implicit rules for Tic-Tac-Toe
 • Must move in a “reasonable” amount of time
 • If loss is inevitable, must move or forfeit

• These rules are generally made **ad-hoc**
 • Make them explicit only if there is a problem
Implicit Rules in Digital Games

- Often implemented as **terms of service**
 - Rules against using mods, bots
 - Rules against play-style (e.g. camping)

- Depend upon context, and can change
 - Ranked vs. unranked in network play
 - Official vs. private game server

- Exist because cannot specify everything
 - Goal is to prevent customer “churn”
How to Design Good Rules

- **Player must have meaningful choices**
 - Player must be able to make decisions
 - System must respond in significant way

- **Bad Rules**: Guess heads or tails to pick a winner
 - All you can do is guess the answer
 - Has no significant effect on the outcome

- **Bad Rules**: Move pieces on board with no interaction
 - Actions have no meaning since pieces don’t interact
 - There are no victory conditions or even challenges
Informal versus Formal Rules

<table>
<thead>
<tr>
<th>Informal</th>
<th>Formal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of initial design process</td>
<td>Part of implementation</td>
</tr>
<tr>
<td>Focuses on how it looks</td>
<td>Corresponds to code</td>
</tr>
<tr>
<td>Less concerned with code</td>
<td>Defined at the frame level</td>
</tr>
<tr>
<td>Many span multiple frames</td>
<td>Interactions link multiple animation frames together</td>
</tr>
<tr>
<td></td>
<td>Goal: match informal design</td>
</tr>
<tr>
<td></td>
<td>Is behavior correct?</td>
</tr>
<tr>
<td></td>
<td>Is behavior expected?</td>
</tr>
</tbody>
</table>
Understanding Game State

- Many game state values are **spatial**
 - Represent location of a game **entity**
 - Also physical values like velocity, acceleration

- Entities act as containers for non-spatial values
 - Values that never change: **attributes**
 - Values that can change: **resources**

- Attributes, resources can be global as well
 - Though most mechanics are at entity level…
Actions Affecting Spatial State

- Typically we what we would call *movement*
 - Present in all but the most abstract games

- But there are many ways to implement
 - **Direct** movement of avatar (e.g. WASD)
 - **Indirect** movement of avatar (e.g. pathfinding)
 - Alter the **environment** (e.g. removing platforms)

- Area of much potential *innovation*
Altering the Environment

- Found in “physics” games
 - No direct control of avatar
 - Can only remove/add/move obstacles in environment
 - Movement is “natural”

- **Example:** *Screw the Nut*

- Physics is a rule system
 - Interaction, not action
 - Takes one state to another
 - Also one that is complex to understand/model
Innovating Avatar Movement

- 2D games move on 2-axes
 - Classic: left-right/up-down
 - Unless top-down game, one of these axes is restricted
- Is jump the only option?
 - Launcher/trajectory verbs
 - (Limited) teleportation
- **Example**: *Knightmare Tower*
 - Launcher-style game
 - Vertical movement is boosts gained from killing enemies
Environment AND Avatar

- Possible to split the verbs
 - Some for avatar movement
 - Others for environment

- Found in “drawing” games
 - Draw missing platforms
 - Avatar walks on platforms
 - **Ex**: Max & Magic Marker

- Innovate by limiting avatar
 - Move on single axis
 - Combine with environment
 - **Example**: Swindler
“Deep Gameplay”

- Want many ways to overcome challenges
 - **Example**: kill enemy or sneak past
 - If just one way, gameplay is “shallow”

- Shallow challenges hurt replayability
 - “Twitch” challenges become boring fast
 - Cerebral challenges solved by the walkthrough

- All games should have a **strategic** element
Strategy

• **Definition**: an elaborate sequence of steps
 • Action is the culmination of all the steps
 • Changing steps or order changes action

• Still allows for puzzle gameplay
 • Allow some *flexibility* in these solution steps
 • **Example**: Multiple solutions to Rubik’s Cube
 • **Example**: Time-rewind in *Braid*

• **Resources** are a common way to implement
Resources and Gameplay

- Resources are crucial to “combat” mechanics
 - Entities have resource values (e.g. health, ammo)
 - Expend resources to affect others (e.g. attack)
 - May change resources of that entity (e.g. damage)

- Three basic categories of resource combat
 - **Tug-Of-War**: entities take from each other
 - **Dot Eating**: entities race to gather *limited* resource
 - **Flower Picking**: race to gather *unlimited* resource
Resources and the Game Economy

• **Sources**: How a resource can increase
 • **Examples**: ammunition clips, health packs

• **Drains**: How a resource can decrease
 • **Examples**: firing weapon, player damage

• **Converters**: Changes one resource to another
 • **Example**: vendors, *Starcraft* barracks

• **Traders**: Exchange resources between entities
 • Mainly (but not always) in multiplayer games
Economic Challenges

- You can use resources to
 - Control player progression (hinder or advance)
 - Modify player abilities (limit or enhance)
 - Create a large possibility space (for replay value)
 - Create strategic gameplay

- Do not need a lot of resources
 - Not every game is a strategy game
 - But *almost all* games have some economy
Resources as Dilemma

• Players perform cost-benefit analyses
 • **Cost**: resource change not beneficial to player
 • **Benefit**: resource change beneficial to player

• **Example**: Survival Horror
 • Use ammo to shoot zombie (**Cost**: ammo)
 • Use knife to stab zombie (**Cost**: health)
 • Benefit the same in each case

• Players act with least cost for benefit
Resources and Monetization

- Most resources are gathered in-game
- But some games allow **external sources**
 - Get resources from a friend on Facebook
 - Pay for resources with a credit card
 - Known as resource **monetization**
- Free-to-play, pay-for-stuff
 - Modern business model for online games
 - But BIG pushback right now (loot crates)
Emergent Behavior

• Coupled Interactions
 • Two mechanics that can happen at once
 • **Verbs**: jump AND run in a platformer
 • **Resources**: warrior AND archer in an RTS

• Context-dependent Interactions
 • Mechanics combine to give new behavior
 • **Verbs**: jump and run is new form of movement
 • **Resources**: warriors form wall to cover archers
Emergent Behavior

- **Coupled Interactions**
 - Two mechanics that can happen at once
 - **Verbs**: jump AND run in a platformer
 - **Resources**: warrior AND archer in an RTS

- **Context-dependent Interactions**
 - Mechanics combine to give new behavior
 - **Verbs**: jump and run is new form of movement
 - **Resources**: warriors form wall to cover archers
Emergent Behavior

- Coupled Interactions
 - Two mechanics that can happen at once
 - **Verbs**: jump AND run in a platformer
 - **Resources**: warriors AND archers in an RTS

- **Key Word**

- Context-dependent Interactions
 - Mechanics combine to give new behavior
 - **Verbs**: jump and run is new form of movement
 - **Resources**: warriors form wall to cover archers

Advantage: game complexity grows **nonlinearly**
Examples of Emergent Actions

Running Jump
- Can move while in midair
 - Just horizontal movement
 - Not realistic; it is a game
 - Many platformer challenges assume this type of control
- Different than a *long jump*
 - Less height than reg. jump
 - No control once in the air
 - Would be a **distinct action**

Strafing Fire
- Based on “real life” property
 - Bullets travel in straight line
 - Movement changes origin
 - Walking side-side makes a spray (used in covering fire)
- But some features are gamy
 - Bullets slower than life
 - Character faster than life
 - Creates interesting effects
Examples of Emergent Actions

Running Jump

- Can move while in midair
 - Just horizontal movement
 - Not realistic; it is a game
 - Many platformer challenges assume this type of control
- Different than a long jump
 - Less height than reg. jump
 - No control once in the air
 - Would be a distinct action

Strafing Fire

- Based on “real life” property
 - Bullets travel in straight line
 - Movement changes origin
 - Walking side-side makes a spray (used in covering fire)
- But some features are gamy
 - Bullets slower than life
 - Character faster than life
 - Creates interesting effects

Interaction(?)

Interaction
Emergent Actions

Is this an example?

Why or why not?
Common Spatial Interactions

Collisions
- Can effect *resources*
 - Player takes damage
 - Player gains power-up
 - Player-NPC transfer gold
- Can effect *spatial values*
 - Bounce off collision point
 - Swing from attached rope
 - Attraction to magnet/charge

Detection
- Examples:
 - Line-of-sight (w/ obstacles)
 - Spatial proximity
- Can have *direct* effects
 - Alarms in a stealth game
- Can have *indirect* effects
 - Tower defense targeting
 - Adjust NPC reactions
Resource-Spatial Interactions

Resource Affects Spatial

- Resources can unlock areas
 - Keys are a trivial resource
 - Also use resource thresholds
 - Ex: Collect all tokens to pass

- Resources affect difficulty
 - Adjust input device sensitivity
 - Ex: Deadeye meter in *RDR*
 - Ex: Jet packs to increase jump

Spatial Affects Resources

- Resources made by entities
 - Have a spatial location
 - Ex: Time to transfer resources
 - Ex: Sources be captured

- Resource values are entities
 - Take up physical volume
 - Need space to acquire
 - Ex: Inventory in *Deux Ex*
Resource-Spatial Interactions

Spatial Affects Resources

- Resources made by entities
 - Have a spatial location
 - **Ex:** Time to transfer resources
 - **Ex:** Sources be captured

- Resource values are entities
 - Take up physical volume
 - Need space to acquire
 - **Ex:** Inventory in *Deux Ex*
Coupling is not Enough

• Example of *trivial* coupling:
 • RTS with single unit type – warrior
 • Coupling can arise from multiple warriors
 • When attack, count number on each side

• Group of warriors *is* sum of its parts
 • Just make a single warrior stronger
 • Discover from *resource analysis*

• Emergent behavior must couple *nonlinearly*
 • If n base mechanics, more than $O(n)$ behaviors
Example: Starcraft

- Basic units can
 - Attack in sky and/or land
 - Defend in sky and/or land
 - How can these combine?

- Further complexity:
 - “Buff” friendly units
 - “Control” enemy units
 - How does this affect game?

- **Challenge:** What is minimal complexity for a good RTS?
Summary

- Rules are **formal systems** defining your game
 - Specify to change the game state over a single frame
 - Challenge is matching them to your informal design

- **Resources** create *strategic* gameplay
 - Resources define the game economy
 - Strategy is just players making economic choices

- **Interactions** facilitate *emergent behavior*
 - Coupled actions/interactions creating new features
 - Can provide deep, nonlinear complexity