Lecture 5

Rules and Mechanics
Today’s Lecture

• Reading is from Unit 2 of Rules of Play
 • Available from library as e-book
 • Linked to from the lecture page

• Not required, but excellent resource
 • Important for the serious designer
 • And ignore the Amazon reviews…

• The “Bible of Game Mechanics”
What are Rules?

- Definition from *Rules of Play*:
 - Rules are *formal schemas*

- But what does this really mean?

- Is it different for digital games?
Challenge of Defining Rules

- They do not need to be *fixed*
 - *Example*: *Nomic* (simulates democratic voting)
 - But are changed in structured ways

- They can *ignored*
 - House-rules that add or remove rules
 - Rule relaxation (e.g. playing with a young child)

- They are not always *explicit*
 - *Example*: does *Halo* have rules on camping?
Implicit Rules

- Rules beyond the explicitly stated ones
- Implicit rules for Tic-Tac-Toe
 - Must move in a “reasonable” amount of time
 - If loss is inevitable, must move or forfeit
- Often have to do with social conventions
 - If violate them, no one wants to play with you
 - Encapsulate being a “good sport”
Much more rigidly defined (in the software)

Possible to change in very structured ways
- Difficulty settings have a list of rule “alternatives”
- But arbitrary house rules are difficult (mods?)

<table>
<thead>
<tr>
<th>Difficulty</th>
<th>Friendly Fire (PC)</th>
<th>Friendly Fire (PS3 Xbox)</th>
<th>Flat Attack Bonus</th>
<th>Flat Defense Bonus</th>
<th>Flat Damage Bonus</th>
<th>Healing Effects Multiplier</th>
<th>Damage Threshold</th>
<th>Enemy Resist Bonus</th>
<th>Player Resist Bonus</th>
<th>Potion Cap</th>
<th>Trap Damage Multiplier</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casual</td>
<td>None</td>
<td>None</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>1.5</td>
<td>3</td>
<td>-10%</td>
<td>10%</td>
<td>20</td>
<td>0.5</td>
<td>Easy AI</td>
</tr>
<tr>
<td>Normal</td>
<td>50%</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>1.5%</td>
<td>0%</td>
<td>12</td>
<td>1.0</td>
<td>Moderate AI</td>
</tr>
<tr>
<td>Hard</td>
<td>100%</td>
<td>50%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.85</td>
<td>9</td>
<td>2.5%</td>
<td>0%</td>
<td>8</td>
<td>1.25</td>
<td>Full AI</td>
</tr>
<tr>
<td>Nightmare</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.85</td>
<td>16</td>
<td>5%</td>
<td>0%</td>
<td>0</td>
<td>1.50</td>
<td>Full AI</td>
</tr>
</tbody>
</table>
Implicit Rules in Digital Games

- Implicit rules exist in digital games too
 - Camping in shooters
 - Juggle combos in fighters

- Depend upon context, and can change
 - Casual vs. core gamers in network play
 - Official vs. private game server

- Exist because cannot specify everything

- Commonly implemented via “terms of service”
(Formal) Rules in a Digital Game

- **Game State**: collection of values that represent the game world at a specific moment in time
 - Location, type of all the game objects
 - Non-spatial values (e.g. health) of these objects
 - Global non-spatial values (e.g. difficulty)
 - A high-dimensional tuple \(\mathbf{v} = (v_1, v_2, v_3, \ldots) \)

- **Possibility Space**: collection of all game states that are allowable (via the rules) in the game
 - Formally, we denote this space \(\mathbb{S} \)

- A *rule* is a function \(f: \mathbb{S} \rightarrow \mathbb{S} \)

But this is less helpful than you might think
How to Design Good Rules

- Player must have *meaningful choices*
 - Player must be able to make decisions
 - System must respond in significant way

Bad Rules: Guess heads or tails to pick a winner
- All you can do is guess the answer
- Has no significant effect on the outcome

Bad Rules: Move pieces on board with no interaction
- Actions have no meaning since pieces don’t interact
- There are no victory conditions or even challenges
Mechanics versus Rules

Mechanics
- *Informal* design concept
- Can represent activity over multiple animation frames

Rules
- *Formal* implementation
- Corresponds to code
- Typically at the level of an animation frame
- Though can have multiple rules per animation frame
- Goal is to match design
 - Is behavior correct?
 - Is behavior expected?
Formalizing Mechanics

- **Actions** take player input I and current state S
 - Express as a function $g: I \times S \rightarrow S$
 - But could simplify; have input part of state

- **Interaction**: function between game states
 - Just like a rule, $f: S \rightarrow S$

- **Order** is another important consideration
 - Multiple actions, interactions possible per frame
 - How does order affect them?

Will return to this
Understanding Game State

- Many game state values are **spatial**
 - Represent location of a game **entity**
 - Also physical values like velocity, acceleration

- Entities act as containers for non-spatial values
 - Values that never change: **attributes**
 - Values that can change: **resources**

- Attributes, resources can be global as well
 - Though most mechanics are at entity level…
Actions Affecting Spatial State

• Typically we what we would call *movement*
 • Present in all but the most abstract games

• But there are many ways to implement
 • **Direct** movement of avatar (e.g. WASD)
 • **Indirect** movement of avatar (e.g. pathfinding)
 • Alter the **environment** (e.g. removing platforms)

• Area of much potential *innovation*
Altering the Environment

- Found in “physics” games
 - No direct control of avatar
 - Can only remove/add/move obstacles in environment
 - Movement is “natural”

- **Example**: *Screw the Nut*

- Physics is a rule system
 - Interaction, not action
 - Takes one state to another
 - Also one that is complex to understand/model
Innovating Avatar Movement

- 2D games move on 2-axes
 - Classic: left-right/up-down
 - Unless top-down game, one of these axes is restricted
- Is jump the only option?
 - Launcher/trajectory verbs
 - (Limited) teleportation
- **Example**: *Knightmare Tower*
 - Launcher-style game
 - Vertical movement is boosts gained from killing enemies
Environment **AND** Avatar

- Possible to split the verbs
 - Some for avatar movement
 - Others for environment
- Found in “drawing” games
 - Draw missing platforms
 - Avatar walks on platforms
 - **Ex:** Max & Magic Marker
- Innovate by limiting avatar
 - Move on single axis
 - Combine with environment
 - **Example:** Swindler
“Deep Gameplay”

- Want many ways to overcome challenges
 - **Example**: kill enemy or sneak past
 - If just one way, gameplay is “shallow”

- Shallow challenges hurt replayability
 - “Twitch” challenges become boring fast
 - Cerebral challenges solved by the walkthrough

- All games should have a **strategic** element
Strategy

• **Definition**: an elaborate sequence of steps
 - Action is the culmination of all the steps
 - Changing steps or order changes action

• Still allows for puzzle gameplay
 - Allow some *flexibility* in these solution steps
 - **Example**: Multiple solutions to Rubik’s Cube
 - **Example**: Time-rewind in *Braid*

• *Resources* are a common way to implement
Resources and Gameplay

- Resources are crucial to “combat” mechanics
 - Entities have resource values (e.g. health, ammo)
 - Expend resources to affect others (e.g. attack)
 - May change resources of that entity (e.g. damage)

- Three basic categories of resource combat
 - **Tug-Of-War**: entities take from each other
 - **Dot Eating**: entities race to gather *limited* resource
 - **Flower Picking**: race to gather *unlimited* resource
Resources and the Game Economy

- **Sources**: How a resource can increase
 - **Examples**: ammunition clips, health packs

- **Drains**: How a resource can decrease
 - **Examples**: firing weapon, player damage

- **Converters**: Changes one resource to another
 - **Example**: vendors, *Starcraft* barracks

- **Traders**: Exchange resources between entities
 - Mainly (but not always) in multiplayer games
Economic Challenges

- You can use resources to
 - Control player progression (hinder or advance)
 - Modify player abilities (limit or enhance)
 - Create a large possibility space (for replay value)
 - Create strategic gameplay

- Do not need a lot of resources
 - Not every game is a strategy game
 - But **almost all** games have some economy
Resources as Dilemma

- Players perform cost-benefit analyses
 - **Cost**: resource change not beneficial to player
 - **Benefit**: resource change beneficial to player

- **Example**: Survival Horror
 - Use ammo to shoot zombie (Cost: ammo)
 - Use knife to stab zombie (Cost: health)
 - Benefit the same in each case

- Players act with least cost for benefit
Resources and Monetization

- Most resources are gathered in-game
- But some games allow external sources
 - Get resources from a friend on Facebook
 - Pay for resources with a credit card
 - Known as resource monetization
- Free-to-play, pay-for-stuff
 - Modern business model for online games
 - Subscription model is (mostly) dead
Example: *Free Realms*
Complexity in Games

• Why is Tic-Tac-Toe unpopular w/ adults?
 • Experienced players always draw
 • Very easy strategy to memorize

• The game is too simple; needs to be complex
 • But if game is too complex, no one will play

• Complexity best through *emergent behavior*
 • “Coupled, context-dependent interactions”
Emergent Behavior

- **Coupled Interactions**
 - Two mechanics that can happen at once
 - **Verbs**: jump AND run in a platformer
 - **Resources**: warrior AND archer in an RTS

- **Context-dependent Interactions**
 - Mechanics combine to give new behavior
 - **Verbs**: jump and run is new form of movement
 - **Resources**: warriors form wall to cover archers
Emergent Behavior

- **Coupled Interactions**
 - Two mechanics that can happen at once
 - **Verbs**: jump AND run in a platformer
 - **Resources**: warrior AND archer in an RTS

- **Context-dependent Interactions**
 - Mechanics combine to give new behavior
 - **Verbs**: jump and run is new form of movement
 - **Resources**: warriors form wall to cover archers
Common Spatial Interactions

<table>
<thead>
<tr>
<th>Collisions</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Can effect resources</td>
<td></td>
</tr>
<tr>
<td>• Player takes damage</td>
<td></td>
</tr>
<tr>
<td>• Player gains power-up</td>
<td></td>
</tr>
<tr>
<td>• Player-NPC transfer gold</td>
<td></td>
</tr>
<tr>
<td>• Can effect spatial values</td>
<td></td>
</tr>
<tr>
<td>• Bounce off collision point</td>
<td></td>
</tr>
<tr>
<td>• Swing from attached rope</td>
<td></td>
</tr>
<tr>
<td>• Attraction to magnet/charge</td>
<td></td>
</tr>
<tr>
<td>• Examples:</td>
<td></td>
</tr>
<tr>
<td>• Line-of-sight (w/ obstacles)</td>
<td></td>
</tr>
<tr>
<td>• Spatial proximity</td>
<td></td>
</tr>
<tr>
<td>• Can have direct effects</td>
<td></td>
</tr>
<tr>
<td>• Alarms in a stealth game</td>
<td></td>
</tr>
<tr>
<td>• Can have indirect effects</td>
<td></td>
</tr>
<tr>
<td>• Tower defense targeting</td>
<td></td>
</tr>
<tr>
<td>• Adjust NPC reactions</td>
<td></td>
</tr>
</tbody>
</table>
Resource-Spatial Interactions

Resource Affects Spatial
- Resources can unlock areas
 - Keys are a trivial resource
 - Also use resource thresholds
 - **Ex:** Collect all tokens to pass
- Resources affect difficulty
 - Adjust input device sensitivity
 - **Ex:** Deadeye meter in *RDR*
 - **Ex:** Jet packs to increase jump

Spatial Affects Resources
- Resources made by entities
 - Have a spatial location
 - **Ex:** Time to transfer resources
 - **Ex:** Sources be captured
- Resource values are entities
 - Take up physical volume
 - Need space to acquire
 - **Ex:** Inventory in *Deux Ex*
Resource-Spatial Interactions

Spatial Affects Resources

- Resources made by entities
 - Have a spatial location
 - **Ex:** Time to transfer resources
 - **Ex:** Sources be captured

- Resource values are entities
 - Take up physical volume
 - Need space to acquire
 - **Ex:** Inventory in *Deux Ex*
Coupling is not Enough

- Example of *trivial* coupling:
 - RTS with single unit type – warrior
 - Coupling can arise from multiple warriors
 - When attack, count number on each side

- Group of warriors *is* sum of its parts
 - Just make a single warrior stronger
 - Discover from *resource analysis*

- Emergent behavior must couple *nonlinearly*
 - If n base mechanics, more than $O(n)$ behaviors
Example: Starcraft

- Basic units can
 - Attack in sky and/or land
 - Defend in sky and/or land
 - How can these combine?

- Further complexity:
 - “Buff” friendly units
 - “Control” enemy units
 - How does this affect game?

- Challenge: What is minimal complexity for a good RTS?
Summary

- Rules are **formal systems** defining your game
 - Take one game state and produce another
 - Implementation of mechanics (a design concept)

- Game state is broken into two categories
 - **Spatial values** are attached to game *entities*
 - **Resources** create economy and *strategic* gameplay

- Good rules should
 - Allow for *meaningful play*
 - Allow for *emergent behavior*