the

gamedesigninitiative
at cornell university
I
Lecture 11

Architecture Patterns

Architecture: The Big Picture

Designer

Programmer

or Modder

Player
Game Engine Input Devices GUI
N
Physics Engine P : Rende.rlng Au‘?lo
Discrete Engine Engine
: Simulation -
Al Engine i Engine
(e.g Pathfinding)
N N |
Compiler Data Management Layer
---------------------- SR kR SR SR, s S
'Game Content | cparacter Character Ul Models Sounds
Scripts Data Elements and Textures
Architecture Patterns 8amed8518mm“a“"e

at cornell university

Architecture: The Big Picture

Programmer

Designer
or Modder

Player
:Game Engine Input Devices GUT
1 . q
! . . . Audio
'| Physics Engine P Discrete (\66 Engine
:) Simulatior 8\«(6
| Al Engine u Ep~ 6\«
'[(e.g Pathfinding) Q\I S %
' N
- = Q
! OQ\] d Data Management Layer
ooy VO o - —
'Game of Character Ul Models Sounds
: oSCTIpts Data Elements and Textures

Architecture Patterns

the . o ege g
gamedesigninitiative

at cornell university

Utilizing Software Patterns

® Pattern: reusable solution to a problem
® Typically a template, not a code library
® Tells you how to design your code

® Made by someone who ran into problem first

® In many cases, pattern gives you the interface

® [st of headers for non-hidden methods
2110 all

® Specification for non-hidden methods over again

® Only thing missing 1s the implementation

[EE— EE——

the . e ege e
4 Architecture Patterns gamedesigninitiative

1111111 ell university
e

Example: Singletons

® Goal: Want to limit class to a single instance
® Do not want to allow users to construct new objects

® But do want them to access the single object

® Application: Writing to the console/terminal
® Want a unique output stream to write to console
® Many output streams would conflict w/ each other
® Given by a unique object in Java (System.out)

® A class with static methods in C# (not a singleton)

the . e ee e
5 Architecture Patterns gamedesigninitiative

11111111111111111111

Creating a Singleton in Java

public class Singleton {

public static final Singleton instance = new Singleton();

private Singleton() {

// Initialize all fields for instance

)

public static Singleton getInstance() {
return instance;

[EE— EE——

the . e e .
6 Architecture Patterns gamedesﬁgﬂtﬁﬁf

- =

Creating a Singleton in Java

public class Singleton {

public static final Singleton instance = new Singleton();

private pingleton() { Provide as an
}insta,nce immutable constant

/! Keep user from
] instantiating

public static Singleton getInstance() {

return instance; Static method is an
] alternative to providing
) access with a constant

~

the . e ege e
7 Architecture Patterns gamedesigninitiative

11111111111111111111

Architecture Patterns

® Essentially same 1dea as software pattern
® Template showing how to organize code

® But does not contain any code itself

® Only difference 1s scope
® Software pattern: simple functionality

® Architecture pattern: complete program

® (Classic pattern: Model-View-Controller (MVC)

® Most popular pattern in single client applications

the . e ee e
8 Architecture Patterns gamedesigninitiative

1111111 ell university
e

Model-View-Controller Pattern

Controller Calls the
* Updates model in methods of
response to events
/ ® Updates view with
model changes
Model
Defines/manages
the program data = <—------—=—-------
Responds to the
controller requests

the . e e .
Architecture Patterns gamedes igninitiative

Example: Temperature Converter

® Model: (TemperatureModel.java)
® Stores one value: fahrenheit

® But the methods present two values

® View: (TemperatureView.java)
® Constructor creates GUI components

® Recieves user input but does not “do anything”

° . (TemperatureConverter.java)
® Main class: instantiates all of the objects

® “Communicates” between model and view

the . e e .
10 Architecture Patterns gamedeﬂ%ﬂzﬁﬁf

TemperatureConverter Example

O O O Temperature Converter

View ' | o '
Fahrenheit | 32.00| Centigrade 0.00
Controller TemperatureConverter

@105dc

TemperatureModel

MO de 1 fahrenheit| 32.0 double

getFahrenheit() setFahrenheit(double)
getCentigrade() setCentrigrade(double)

at cornell university

11 Architecture Patterns gamedesigninitiative

The Game Loop and MVC

® Model: The game state

v
® Value of game resources
® | ocation of game objects Update
® View: The draw phase !

® Focus of upcoming lectures

® Controller: The update phase

® Alters the game state
® Topic of previous lecture

[EE— EE——

the . e e .
12 Architecture Patterns gamedesigninitiative

1111111 ell university
T

Model-Controller Separation (Standard)

Model Controller
® Store/retrieve object data ® Process user input
® Limit access (getter/setter) ® Determine action for input
® Preserve any invariants ® Example: mouse, gamepad
® Only affects this object ® (all action in the model

® Implements object logic

13

e Compl ti model o
OMpIex actions on Traditional controllers

o . . * %9
May affect multiple models are “lightweight

® Example: attack, collide

the . e e .
Architecture Patterns 8amede$§{§iﬂ}tﬂit‘$

Classic Software Problem: Extensibility

® Given: Class with some base functionality
® Might be provided in the language API
® Might be provided in 3" party software

® Goal: Object with additional functionality
® (lassic solution 1s to subclass original class first

® Example: Extending GUI widgets (e.g. Swing)

® But subclassing does not always work...

® How do you extend a Singleton object?

[EE— EE——

the . e ee e
14 Architecture Patterns gamedesigninitiative

11111111111111111111

Problem with Subclassing

15

Games have lots of classes
® FEach game entity 1s different

® Needs its own functionality
(e.g. object methods)

Want to avoid redundancies
® Makes code hard to change

® Common source of bugs

Might be tempted to subclass
® Common behavior in parents

® Specific behavior in children

NPC

e

Architecture Patterns

Human Orc
Human Human Orc Orc
Warri Arc Warri Arc

A A
Y

Redundant Behavior

the . o ege g
gamedesigninitiative
at cornell uni i

iversity

Problem with Subclassing

16

Games have lots of classes
® FEach game entity 1s different

® Needs its own functionality
(e.g. object methods)

Want to avoid redundancies
® Makes code hard to change

® Common source of bugs

Might be tempted to subclass
® Common behavior in parents

® Specific behavior in children

gl

Warrior Archer
Human Orc Human Orc
Warri Warri Arc Arc

A Y A

Architecture Patterns

Redundant Behavior

the . o ege g
gamedesigninitiative

at cornell university

Model-Controller Separation (Standard)

Model

NPC

e

Store/retrieve object data
® Limit access (getter/setter)
® Preserve any invariants Humag

® Only affects this object

a

&

Orc

Implements object logic R Humani Humani
‘ Warri Arc

® Complex actions on model

Orc
Warri

Orc
Arc

® May affect multiple models
¢ Example: attack, collide P Redundant Behavior

17

Architecture Patterns

the . o e g4
gamedesigninitiative
at corne i

11 university

Model-Controller Separation (Alternate)

Model Controller
® Store/retrieve object data ® Process game actions
® Limit access (getter/setter) ® Determine from input or Al
® Preserve any invariants ® Find all objects effected
® Only affects this object ® Apply action to objects
® Process interactions
In this case, models ® Look at current game state
are lightweight ® Look for “triggering” event

® Apply interaction outcome

the . e e .
18 Architecture Patterns gamedesﬂi%giﬂﬂﬁﬁf

D

)oes Not Completely Solve Problem

19

® (Code correctness a concern

Architecture Patterns

Methods have specifications

Must use according to spec

® Check correctness via typing

Find methods in object class
Example: orc.flee()
Check type of parameters

Example: force_to_flee(orc)

® Logical association with type

Even if not part of class

the . o e g4
gamedesigninitiative
at cornell university

Issues with the OO Paradigm

® (Object-oriented programming 1S very noun-centric
® All code must be organized into classes
® Polymorphism determines capability via type

® OO became popular with traditional MV C pattern
® Widget libraries are nouns implementing view
® Data structures (e.g. CS 2110) are all nouns

® Controllers are not necessarily nouns, but lightweight

® Games, interactive media break this paradigm
® View 1s animation (process) oriented, not widget oriented

® Actions/capabilities only loosely connected to entities

20 Architecture Patterns gamedesigninitiative

11111111111111111111

Programming and Parts of Speech

Classes/Types are Nouns Actions are Verbs
® Methods have verb names ® (apability of a game object
® Method calls are sentences ® Often just a simple function
® gsubject.verb(object) ® damage(object)
® gubject.verb() ® collide(object1,object1)
® C(lasses related by is-a ® Relates to objects via can-it
® [ndicates class a subclass of ® Example: Orc can-it flee
® Example: String is-a Object ® Not necessarily tied to class

. . . : . .
® Objects are class instances Example: swapping 1tems

the . e e .
21 Architecture Patterns gamedesﬁgﬂtﬁﬁf

Duck Typing: Reaction to This Issue

® “Type” determined by its
® Names of its methods
® Names of its properties
® [fit “quacks like a duck™

® Python has this capability
® hasattr(<object>,<string>)

® True if object has attribute
or method of that name

® This has many problems

® (Correctness 1s a nightmare

22 Architecture Patterns

Java:
public boolean equals(Object h) {
if (I(h instanceof Person)) {
return false;}
Person ob= (Person)h;

return name.equals(ob.name);

}
Python:

def __eq__ (self,0b):
if (not (hasattr(ob, name’))
return False
return (self.name == ob.name)

the . o ege g
gamedesigninitiative
at cornell university

Duck Typing: Reaction to This Issue

® “Type” determined by its Java:
® Names of i public boolean equals(Object h) {
o Names of | ¢ What do we really want? son)) {
o Ifit“quac] ° Capabilities over properties N
® Extend capabilities without
ob.name);
® Python has t necessarily changing type
® hasattr(<ol e Without using new languages
® True if obj .
or methodl © Again, use a software pattern
—————l 01116
® This has many problems return False
® (Correctness is a nightmare return (self.name == ob.name)

23 Architecture Patterns

the . o ege g
gamedesigninitiative
at cornell university

Possible Solution; Decorator Pattern

Request

24

Functionl

Decorat Original o Original
Ob J e ‘_ Functionality Ob _] ect
’

[EE— EE——

. the . e el .
Architecture Patterns gamedesh‘t%mnﬁtlatlvte
at cornell universi y

- =

Java |/O Example

InputStream input = System.in;
mconsole input }

Reader reader = new InputStreamReader(input);

Make characters easy to read }

BufferedReader buffer = new BufferedReader(reader);

mle line at a time }
Most of java.io

works this way

25 Architecture Patterns gamedesigninitiative

11111111111111111111

Alternate Solution: Delegation Pattern

Original Reference to Dele gate

R t 7 >
cques / Obj ect delegate ObJ =

S Forvara_ A

Request

Inversion of the Decorator Pattern

26 Architecture Patterns

- ===
the . o e g4
gamedesigninitiative

at cornell universit

- =

Example: Sort Algorithms

public class SortableArray extends ArrayList{

private Sorter sorter = ne%(); new QuickSorter();

public void setSorter(Sorter s) { sorter = s; }

public void sort() {

Object[] list = toArray(); public interface Sorter {
sorter.sort(list); public void sort(Object[] list);
clear(); }

for (o:list) { add(o); }

27 Architecture Patterns gamedesigninitiative

11111111111111111111

Comparison of Approaches

Decoration Delegation

® Pattern applies to decorator ~ ® Applies to original object

® Given the original object ® You designed object class
® Requests through decorator ® All requests through object
® Monolithic solution ® Modular solution
® Decorator has all methods ® FEach method can have own
® “Layer” for more methods delegate implementation
(e.g. Java I/O classes) ® Like higher-order functions
® Works on any object/class ® Limited to classes you make

the . e e .
78 Architecture Patterns 8amede$§{§iﬂ}t§itﬁ$

The Subclass Problem Revisited

NPC
Human Orc
Huma Huma Orc Orc
Wa Arc Wa Arc

A

A

\

Redundant Behavior

29

Architecture Patterns

NPC

Slot

Slot

Slot

Delegates?

Orc

Ami

the . o e g4
gamedesigninitiative

at cornell university

Component-Based Programming

30

Delegates ® Role: Set of capabilities
Role 1 ® (lass with very little data
® A collection of methods
Slot €= Role
| J ® Add 1t to object as delegate
e roldl ® (Object gains those methods
o p ® Acts as a “function pointer”
Role' ® (an-it. search object roles
® (Check class of each role
Field storing a ® PBetter than duck typing

single delegate or

® Possible at compile time?
a set of delegates

the . e e .
Architecture Patterns gamedeﬂgjﬂtﬁﬁs

Entities Need Both Is-a and Can-it

Table Chair

31

Objects share same capabilities in theory.
But certain actions are preferred on each.

the . e e .
Architecture Patterns gamed%?ﬂfﬂtﬁﬁ?

- =

Model-Controller Separation Revisited

Model Controller
® Store/retrieve object data ® Process interactions
® Preserve any invariants ® [ook at current game state
® Data may include delegates ® Look for “triggering” event
® Determines is-a properties ® Apply interaction outcome

Components

® Process game actions
® Attached to a entity (model)

® [Uses the model as context

1 ® Determines can-it properties b medesigninitiative

What about the View?

® Way too much to draw

® Backgrounds ¥
® Ul elements

o Individual NPCs Upees
® Other moveable objects l

® (Cannot cram all in Draw

Draw

® Put 1t 1n game object?

® But objects are models
® Violates MVC again

the . e e .
33 Architecture Patterns gam‘%desﬂ%f:}f;}tﬁtﬁ‘f

Solution: A Drawing Canvas

® Treat display as a container .
® (ften called a canvas P H
® (leared at start of frame ’“““_‘,; U
® Objects added to container —
® Draw contents at frame end ;ﬁ/ﬂf/
® (Canvas abstracts rendering Passed as
reference

® Hides animation details

void draw(Canvas ¢) {
// Specify perspective
// Add to canvas

® Like working with widget

® Implement draw(c) in model

® (lassic heavyweight model

)

® No problems with extension

the . e e .
34 Architecture Patterns 8amede$§{§iﬂ}t§itﬁ$

Solution: A Drawing Canvas

® Treat display as a container (\RW
® (ften called a canvas P H .
® (Cleared at start of frame X
. . al
® Objects added to container i \)S“
® Draw contents at frame end (& Lot
® (Canvas abstracts rend~ Passed as
. L | reference
® Hides animat* %?)‘6,
® Like~ %Q'Q\\’ void draw(Canvas ¢) {
\\56 // Specify perspective
® (las. _.avyweight model]
® No problems with extension
35 Architecture Patterns tz‘g%‘medeSia%gjgi?ﬁVe

versity

Summary

® Games naturally fit a specialized MV C pattern

® Want lightweight models (mainly for serialization)
® Want heavyweight controllers for the game loop

® View is specialized rendering with few widgets

® Proper design leads to unusual OO patterns

36

® Subclass hierarchies are unmanageable
® Want component-based design to model actions

® Will revisit this again when we talk about Al

the . e ee e
Architecture Patterns gamedesigninitiative

1111111 ell university
e

