
gamedesigninitiative
at cornell university

the

Architecture Patterns

Lecture 11

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Architecture Patterns 2

gamedesigninitiative
at cornell university

the

Architecture: The Big Picture

Architecture Patterns 3

gamedesigninitiative
at cornell university

the

Utilizing Software Patterns

� Pattern: reusable solution to a problem
�  Typically a template, not a code library
�  Tells you how to design your code
� Made by someone who ran into problem first

� In many cases, pattern gives you the interface
�  List of headers for non-hidden methods
�  Specification for non-hidden methods
� Only thing missing is the implementation

Architecture Patterns 4

2110 all
over again

gamedesigninitiative
at cornell university

the

Example: Singletons

� Goal: Want to limit class to a single instance
� Do not want to allow users to construct new objects
� But do want them to access the single object

� Application: Writing to the console/terminal
� Want a unique output stream to write to console
� Many output streams would conflict w/ each other
� Given by a unique object in Java (System.out)
� A class with static methods in C# (not a singleton)

Architecture Patterns 5

gamedesigninitiative
at cornell university

the

Creating a Singleton in Java

public class Singleton {

 public static final Singleton instance = new Singleton();

 private Singleton() {

 // Initialize all fields for instance

 }

 public static Singleton getInstance() {

 return instance;

 }

}

Architecture Patterns 6

gamedesigninitiative
at cornell university

the

Creating a Singleton in Java

public class Singleton {

 public static final Singleton instance = new Singleton();

 private Singleton() {

 // Initialize all fields for instance

 }

 public static Singleton getInstance() {

 return instance;

 }

}

Architecture Patterns 7

Keep user from
instantiating	

Provide as an
immutable constant	

Static method is an
alternative to providing
access with a constant	

gamedesigninitiative
at cornell university

the

Architecture Patterns

� Essentially same idea as software pattern
�  Template showing how to organize code
� But does not contain any code itself

� Only difference is scope
�  Software pattern: simple functionality
� Architecture pattern: complete program

� Classic pattern: Model-View-Controller (MVC)
� Most popular pattern in single client applications

Architecture Patterns 8

gamedesigninitiative
at cornell university

the

Model
• Defines/manages

 the program data
• Responds to the

 controller requests

View
• Displays model

 to the user/player
• Provides interface

 for the controller

Controller
• Updates model in

 response to events
• Updates view with

 model changes

Architecture Patterns 9

Model-View-Controller Pattern

Calls the
methods of	

gamedesigninitiative
at cornell university

the

Example: Temperature Converter

� Model: (TemperatureModel.java)
�  Stores one value: fahrenheit
�  But the methods present two values

�  View: (TemperatureView.java)
�  Constructor creates GUI components
�  Recieves user input but does not “do anything”

�  Controller: (TemperatureConverter.java)
�  Main class: instantiates all of the objects
�  “Communicates” between model and view

Architecture Patterns 10

gamedesigninitiative
at cornell university

the

View

Model

TemperatureConverter Controller

TemperatureConverter Example

@105dc

fahrenheit

getCentigrade()

TemperatureModel

double

setCentrigrade(double)
getFahrenheit() setFahrenheit(double)

32.0

Architecture Patterns 11

gamedesigninitiative
at cornell university

the

The Game Loop and MVC

� Model: The game state
� Value of game resources
�  Location of game objects

� View: The draw phase
�  Focus of upcoming lectures

� Controller: The update phase
� Alters the game state
�  Topic of previous lecture

Update

Draw

Architecture Patterns 12

gamedesigninitiative
at cornell university

the

Model

�  Store/retrieve object data
�  Limit access (getter/setter)
�  Preserve any invariants
�  Only affects this object

�  Implements object logic
�  Complex actions on model
�  May affect multiple models
�  Example: attack, collide

Architecture Patterns 13

Model-Controller Separation (Standard)

Controller

�  Process user input
�  Determine action for input
�  Example: mouse, gamepad
�  Call action in the model

Traditional controllers
are “lightweight”

gamedesigninitiative
at cornell university

the

Classic Software Problem: Extensibility

� Given: Class with some base functionality
� Might be provided in the language API
� Might be provided in 3rd party software

� Goal: Object with additional functionality
� Classic solution is to subclass original class first
� Example: Extending GUI widgets (e.g. Swing)

� But subclassing does not always work…
� How do you extend a Singleton object?

Architecture Patterns 14

gamedesigninitiative
at cornell university

the

�  Games have lots of classes
�  Each game entity is different
�  Needs its own functionality

(e.g. object methods)

�  Want to avoid redundancies
�  Makes code hard to change
�  Common source of bugs

�  Might be tempted to subclass
�  Common behavior in parents
�  Specific behavior in children

Architecture Patterns 15

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

Orc Human

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

�  Games have lots of classes
�  Each game entity is different
�  Needs its own functionality

(e.g. object methods)

�  Want to avoid redundancies
�  Makes code hard to change
�  Common source of bugs

�  Might be tempted to subclass
�  Common behavior in parents
�  Specific behavior in children

Architecture Patterns 16

Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

Archer Warrior

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

Model

�  Store/retrieve object data
�  Limit access (getter/setter)
�  Preserve any invariants
�  Only affects this object

�  Implements object logic
�  Complex actions on model
�  May affect multiple models
�  Example: attack, collide

Architecture Patterns 17

Model-Controller Separation (Standard)

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

Orc Human

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

Model

�  Store/retrieve object data
�  Limit access (getter/setter)
�  Preserve any invariants
�  Only affects this object

Architecture Patterns 18

Model-Controller Separation (Alternate)

Controller

�  Process game actions
�  Determine from input or AI
�  Find all objects effected
�  Apply action to objects

�  Process interactions
�  Look at current game state
�  Look for “triggering” event
�  Apply interaction outcome

In this case, models
are lightweight

gamedesigninitiative
at cornell university

the

�  Code correctness a concern
�  Methods have specifications
�  Must use according to spec

�  Check correctness via typing
�  Find methods in object class
�  Example: orc.flee()

�  Check type of parameters
�  Example: force_to_flee(orc)

�  Logical association with type
�  Even if not part of class

Architecture Patterns 19

Does Not Completely Solve Problem

Can I
flee?

gamedesigninitiative
at cornell university

the

Issues with the OO Paradigm

�  Object-oriented programming is very noun-centric
�  All code must be organized into classes
�  Polymorphism determines capability via type

�  OO became popular with traditional MVC pattern
�  Widget libraries are nouns implementing view
�  Data structures (e.g. CS 2110) are all nouns
�  Controllers are not necessarily nouns, but lightweight

�  Games, interactive media break this paradigm
�  View is animation (process) oriented, not widget oriented
�  Actions/capabilities only loosely connected to entities

Architecture Patterns 20

gamedesigninitiative
at cornell university

the

Classes/Types are Nouns

�  Methods have verb names

�  Method calls are sentences
�  subject.verb(object)

�  subject.verb()

�  Classes related by is-a
�  Indicates class a subclass of
�  Example: String is-a Object

�  Objects are class instances
Architecture Patterns 21

Programming and Parts of Speech

Actions are Verbs

�  Capability of a game object

�  Often just a simple function
�  damage(object)

�  collide(object1,object1)

�  Relates to objects via can-it
�  Example: Orc can-it flee
�  Not necessarily tied to class
�  Example: swapping items

gamedesigninitiative
at cornell university

the

�  “Type” determined by its
�  Names of its methods
�  Names of its properties
�  If it “quacks like a duck”

�  Python has this capability

�  hasattr(<object>,<string>)

�  True if object has attribute

or method of that name

�  This has many problems
�  Correctness is a nightmare

Java:
 public boolean equals(Object h) {

 if (!(h instanceof Person)) {

 return false;}

 Person ob= (Person)h;

 return name.equals(ob.name);

 }

Python:
 def __eq__(self,ob):

 if (not (hasattr(ob,'name’))

 return False

 return (self.name == ob.name)

Architecture Patterns 22

Duck Typing: Reaction to This Issue

gamedesigninitiative
at cornell university

the

�  “Type” determined by its
�  Names of its methods
�  Names of its properties
�  If it “quacks like a duck”

�  Python has this capability

�  hasattr(<object>,<string>)

�  True if object has attribute

or method of that name

�  This has many problems
�  Correctness is a nightmare

Java:
 public boolean equals(Object h) {

 if (!(h instanceof Person)) {

 return false;}

 Person ob= (Person)h;

 return name.equals(ob.name);

 }

Python:
 def __eq__(self,ob):

 if (not (hasattr(ob,'name’))

 return False

 return (self.name == ob.name)

Architecture Patterns 23

Duck Typing: Reaction to This Issue

�  What do we really want?
�  Capabilities over properties
�  Extend capabilities without

necessarily changing type
�  Without using new languages

�  Again, use a software pattern

gamedesigninitiative
at cornell university

the

Reference to
base object

New
Functionality

Architecture Patterns 24

Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality

gamedesigninitiative
at cornell university

the

Java I/O Example

InputStream input = System.in;

Reader reader = new InputStreamReader(input);

BufferedReader buffer = new BufferedReader(reader);

Architecture Patterns 25

Built-in console input	

Make characters easy to read	

Read whole line at a time	

Most of java.io �
works this way

gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Patterns 26

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request Delegate
Object 2

Forward
Request

Inversion of the Decorator Pattern

gamedesigninitiative
at cornell university

the

Example: Sort Algorithms
public class SortableArray extends ArrayList{

 private Sorter sorter = new MergeSorter();

 public void setSorter(Sorter s) { sorter = s; }

 public void sort() {

 Object[] list = toArray();

 sorter.sort(list);

 clear();

 for (o:list) { add(o); }

 }

}

Architecture Patterns 27

 public interface Sorter {

 public void sort(Object[] list);

 }

new QuickSorter();

gamedesigninitiative
at cornell university

the

Decoration

�  Pattern applies to decorator
�  Given the original object
�  Requests through decorator

�  Monolithic solution
�  Decorator has all methods
�  “Layer” for more methods

(e.g. Java I/O classes)

�  Works on any object/class

Architecture Patterns 28

Comparison of Approaches

Delegation

�  Applies to original object
�  You designed object class
�  All requests through object

�  Modular solution
�  Each method can have own

delegate implementation
�  Like higher-order functions

�  Limited to classes you make

gamedesigninitiative
at cornell university

the

Architecture Patterns 29

The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

Orc Human

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

�  Role: Set of capabilities
�  Class with very little data
�  A collection of methods

�  Add it to object as delegate
�  Object gains those methods
�  Acts as a “function pointer”

�  Can-it: search object roles
�  Check class of each role
�  Better than duck typing
�  Possible at compile time?

Architecture Patterns 30

Component-Based Programming

Role 3

Role 4

Role 1

Role 2 Slot

Slot

Slot

Entity

Delegates

Field storing a
single delegate or ���
a set of delegates	

gamedesigninitiative
at cornell university

the

Table

Architecture Patterns 31

Entities Need Both Is-a and Can-it

Chair

Objects share same capabilities in theory.
But certain actions are preferred on each.

gamedesigninitiative
at cornell university

the

Model

�  Store/retrieve object data
�  Preserve any invariants
�  Data may include delegates
�  Determines is-a properties

Architecture Patterns 32

Model-Controller Separation Revisited

Controller

�  Process interactions
�  Look at current game state
�  Look for “triggering” event
�  Apply interaction outcome

Components

�  Process game actions
�  Attached to a entity (model)
�  Uses the model as context
�  Determines can-it properties

? ?

gamedesigninitiative
at cornell university

the

� Way too much to draw
�  Backgrounds
�  UI elements
�  Individual NPCs
�  Other moveable objects

�  Cannot cram all in Draw

�  Put it in game object?
�  But objects are models
�  Violates MVC again

Architecture Patterns 33

What about the View?

Update

Draw

gamedesigninitiative
at cornell university

the

�  Treat display as a container
�  Often called a canvas
�  Cleared at start of frame
�  Objects added to container
�  Draw contents at frame end

�  Canvas abstracts rendering
�  Hides animation details
�  Like working with widget

�  Implement draw(c) in model
�  Classic heavyweight model
�  No problems with extension

Architecture Patterns 34

Solution: A Drawing Canvas

void draw(Canvas c) {

 // Specify perspective

 // Add to canvas�
}

Passed as
reference

gamedesigninitiative
at cornell university

the

�  Treat display as a container
�  Often called a canvas
�  Cleared at start of frame
�  Objects added to container
�  Draw contents at frame end

�  Canvas abstracts rendering
�  Hides animation details
�  Like working with widget

�  Implement draw(c) in model
�  Classic heavyweight model
�  No problems with extension

Architecture Patterns 35

Solution: A Drawing Canvas

void draw(Canvas c) {

 // Specify perspective

 // Add to canvas�
}

Passed as
reference

gamedesigninitiative
at cornell university

the

Summary

� Games naturally fit a specialized MVC pattern
� Want lightweight models (mainly for serialization)
� Want heavyweight controllers for the game loop
� View is specialized rendering with few widgets

� Proper design leads to unusual OO patterns
�  Subclass hierarchies are unmanageable
� Want component-based design to model actions
� Will revisit this again when we talk about AI

Architecture Patterns 36

