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Utilizing Software Patterns 

� Pattern: reusable solution to a problem 
�  Typically a template, not a code library 
�  Tells you how to design your code 
� Made by someone who ran into problem first 

� In many cases, pattern gives you the interface 
�  List of headers for non-hidden methods 
�  Specification for non-hidden methods 
� Only thing missing is the implementation 
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2110 all  
over again 
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Example: Singletons 

� Goal: Want to limit class to a single instance 
� Do not want to allow users to construct new objects 
� But do want them to access the single object 

� Application: Writing to the console/terminal 
� Want a unique output stream to write to console 
� Many output streams would conflict w/ each other 
� Given by a unique object in Java (System.out) 
� A class with static methods in C# (not a singleton) 
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Creating a Singleton in Java 

public class Singleton {


    public static final Singleton instance = new Singleton();


    private Singleton() {

        // Initialize all fields for instance

    } 


    public static Singleton getInstance() {

        return instance;

    }

}
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Keep user from 
instantiating	



Provide as an 
immutable constant	



Static method is an 
alternative to providing 
access with a constant	
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Architecture Patterns 

� Essentially same idea as software pattern 
�  Template showing how to organize code 
� But does not contain any code itself 

� Only difference is scope 
�  Software pattern: simple functionality 
� Architecture pattern: complete program 

� Classic pattern: Model-View-Controller (MVC) 
� Most popular pattern in single client applications 
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Model 
•  Defines/manages  

 the program data 
•  Responds to the 

 controller requests 

View 
•  Displays model  

 to the user/player 
•  Provides interface 

 for the controller 

Controller 
•  Updates model in 

 response to events 
•  Updates view with 

 model changes  
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Model-View-Controller Pattern 

Calls the 
methods of	
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Example: Temperature Converter 

� Model: (TemperatureModel.java) 
�  Stores one value: fahrenheit 
�  But the methods present two values 

�  View: (TemperatureView.java) 
�  Constructor creates GUI components 
�  Recieves user input but does not “do anything” 

�  Controller: (TemperatureConverter.java) 
�  Main class: instantiates all of the objects 
�  “Communicates” between model and view 

Architecture Patterns 10 



gamedesigninitiative
at cornell university

the

View 

Model 

TemperatureConverter Controller 

TemperatureConverter Example 

 
 
 
 
 
 

@105dc 

fahrenheit 

getCentigrade() 

TemperatureModel 

double 

setCentrigrade(double) 
getFahrenheit() setFahrenheit(double) 

32.0 
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The Game Loop and MVC 

� Model: The game state 
� Value of game resources 
�  Location of game objects 

� View: The draw phase 
�  Focus of upcoming lectures 

� Controller: The update phase 
� Alters the game state 
�  Topic of previous lecture 

Update 

Draw 
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Model 

�  Store/retrieve object data 
�  Limit access (getter/setter) 
�  Preserve any invariants 
�  Only affects this object 

�  Implements object logic 
�  Complex actions on model 
�  May affect multiple models 
�  Example: attack, collide 
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Model-Controller Separation (Standard) 

Controller 

�  Process user input 
�  Determine action for input 
�  Example: mouse, gamepad 
�  Call action in the model 

Traditional controllers 
are “lightweight” 
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Classic Software Problem: Extensibility 

� Given: Class with some base functionality 
� Might be provided in the language API 
� Might be provided in 3rd party software 

� Goal: Object with additional functionality 
� Classic solution is to subclass original class first 
� Example: Extending GUI widgets (e.g. Swing) 

� But subclassing does not always work… 
� How do you extend a Singleton object? 
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�  Games have lots of classes 
�  Each game entity is different 
�  Needs its own functionality 

(e.g. object methods) 

�  Want to avoid redundancies 
�  Makes code hard to change 
�  Common source of bugs 

�  Might be tempted to subclass 
�  Common behavior in parents 
�  Specific behavior in children 

Architecture Patterns 15 

Problem with Subclassing 

Human 
Warrior 

Human 
Archer 

Orc 
Warrior 

Orc 
Archer 

Orc Human 

NPC 

Redundant Behavior 
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Problem with Subclassing 

Human 
Warrior 

Orc 
Warrior 

Human 
Archer 

Orc 
Archer 

Archer Warrior 

NPC 

Redundant Behavior 
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Model-Controller Separation (Standard) 
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Model-Controller Separation (Alternate) 

Controller 

�  Process game actions 
�  Determine from input or AI 
�  Find all objects effected 
�  Apply action to objects 

�  Process interactions 
�  Look at current game state 
�  Look for “triggering” event 
�  Apply interaction outcome 

In this case, models  
are lightweight 
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�  Code correctness a concern 
�  Methods have specifications 
�  Must use according to spec 

�  Check correctness via typing 
�  Find methods in object class 
�  Example: orc.flee()

�  Check type of parameters 
�  Example: force_to_flee(orc)


�  Logical association with type 
�  Even if not part of class 
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Does Not Completely Solve Problem 

Can I 
flee? 
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Issues with the OO Paradigm 

�  Object-oriented programming is very noun-centric 
�  All code must be organized into classes 
�  Polymorphism determines capability via type 

�  OO became popular with traditional MVC pattern 
�  Widget libraries are nouns implementing view  
�  Data structures (e.g. CS 2110) are all nouns 
�  Controllers are not necessarily nouns, but lightweight 

�  Games, interactive media break this paradigm 
�  View is animation (process) oriented, not widget oriented 
�  Actions/capabilities only loosely connected to entities 

Architecture Patterns 20 



gamedesigninitiative
at cornell university

the

Classes/Types are Nouns 

�  Methods have verb names 

�  Method calls are sentences 
�  subject.verb(object)

�  subject.verb()


�  Classes related by is-a 
�  Indicates class a subclass of 
�  Example: String is-a Object 

�  Objects are class instances 
Architecture Patterns 21 

Programming and Parts of Speech 

Actions are Verbs 

�  Capability of a game object 

�  Often just a simple function 
�  damage(object)

�  collide(object1,object1)


�  Relates to objects via can-it 
�  Example: Orc can-it flee 
�  Not necessarily tied to class 
�  Example: swapping items 
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�  “Type” determined by its 
�  Names of its methods  
�  Names of its properties 
�  If it “quacks like a duck” 

�  Python has this capability

�  hasattr(<object>,<string>)

�  True if object has attribute 

or method of that name 

�  This has many problems 
�  Correctness is a nightmare 

Java: 
    public boolean equals(Object h) {

        if (!(h instanceof Person)) {


           return false;}

        Person ob= (Person)h;

        return name.equals(ob.name);

    }


Python: 
    def __eq__(self,ob):

        if (not (hasattr(ob,'name’))

            return False

        return (self.name == ob.name)
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Duck Typing: Reaction to This Issue 
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Duck Typing: Reaction to This Issue 

�  What do we really want? 
�  Capabilities over properties 
�  Extend capabilities without 

necessarily changing type 
�  Without using new languages 

�  Again, use a software pattern 
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Reference to 
base object 

New 
Functionality 
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Possible Solution: Decorator Pattern 

Original 
Object 

Decorator 
Object 

Request Original 
Functionality 
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Java I/O Example 

InputStream input = System.in;





Reader reader = new InputStreamReader(input);





BufferedReader buffer = new BufferedReader(reader);
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Built-in console input	



Make characters easy to read	



Read whole line at a time	


Most of java.io �
works this way 
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Reference to 
delegate 
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Alternate Solution: Delegation Pattern 

Original 
Object 

Delegate 
Object 1 

Request Delegate 
Object 2 

Forward 
Request 

Inversion of the Decorator Pattern 
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Example: Sort Algorithms 
public class SortableArray extends ArrayList{


   private Sorter sorter = new MergeSorter();


   public void setSorter(Sorter s) { sorter = s; }


   public void sort() {

        Object[] list = toArray();

        sorter.sort(list);

        clear(); 

        for (o:list) { add(o); }

    }

}
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  public interface Sorter { 

      public void sort(Object[] list); 

  } 

new QuickSorter(); 
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Decoration 

�  Pattern applies to decorator 
�  Given the original object 
�  Requests through decorator 

�  Monolithic solution 
�  Decorator has all methods 
�  “Layer” for more methods 

(e.g. Java I/O classes) 

�  Works on any object/class 
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Comparison of Approaches 

Delegation 

�  Applies to original object 
�  You designed object class 
�  All requests through object 

�  Modular solution 
�  Each method can have own 

delegate implementation 
�  Like higher-order functions 

�  Limited to classes you make 
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The Subclass Problem Revisited 

Warrior 

Archer 

Orc 

Human 
Slot 

Slot 

Slot 

NPC 

Delegates? 

Human 
Warrior 

Human 
Archer 

Orc 
Warrior 

Orc 
Archer 

Orc Human 

NPC 

Redundant Behavior 
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�  Role: Set of capabilities 
�  Class with very little data 
�  A collection of methods 

�  Add it to object as delegate 
�  Object gains those methods 
�  Acts as a “function pointer” 

�  Can-it: search object roles 
�  Check class of each role 
�  Better than duck typing 
�  Possible at compile time? 
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Component-Based Programming 

Role 3 

Role 4 

Role 1 

Role 2 Slot 

Slot 

Slot 

Entity 

Delegates 

Field storing a 
single delegate or ���
a set of delegates	
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Table 
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Entities Need Both Is-a and Can-it 


Chair 

Objects share same capabilities in theory. 
But certain actions are preferred on each. 
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Model 

�  Store/retrieve object data 
�  Preserve any invariants 
�  Data may include delegates 
�  Determines is-a properties 
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Model-Controller Separation Revisited 

Controller 

�  Process interactions 
�  Look at current game state 
�  Look for “triggering” event 
�  Apply interaction outcome 

Components 

�  Process game actions 
�  Attached to a entity (model) 
�  Uses the model as context 
�  Determines can-it properties 

? ? 
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� Way too much to draw 
�  Backgrounds 
�  UI elements 
�  Individual NPCs 
�  Other moveable objects 

�  Cannot cram all in Draw 

�  Put it in game object? 
�  But objects are models 
�  Violates MVC again 
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What about the View? 

Update 

Draw 
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�  Treat display as a container 
�  Often called a canvas 
�  Cleared at start of frame 
�  Objects added to container 
�  Draw contents at frame end 

�  Canvas abstracts rendering 
�  Hides animation details 
�  Like working with widget 

�  Implement draw(c) in model 
�  Classic heavyweight model 
�  No problems with extension 
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Solution: A Drawing Canvas 

void draw(Canvas c) {

    // Specify perspective

    // Add to canvas�
}


Passed as 
reference 
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Solution: A Drawing Canvas 

void draw(Canvas c) {

    // Specify perspective

    // Add to canvas�
}


Passed as 
reference 
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Summary 

� Games naturally fit a specialized MVC pattern 
� Want lightweight models (mainly for serialization) 
� Want heavyweight controllers for the game loop 
� View is specialized rendering with few widgets 

� Proper design leads to unusual OO patterns 
�  Subclass hierarchies are unmanageable 
� Want component-based design to model actions 
� Will revisit this again when we talk about AI 
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