
ECE/CS 314 Spring 2004

Section 7
CAST Circuit Description Language

By Victor Aprea

What is CAST?

A Hardware description language
Not to be confused with a programming
language!

Describe logic circuits at the gate level
Build up from primitives (Nand, Nor, Inverter)

Define circuit blocks
Simulate the functionality of circuits

Show signals as (bundled) waveforms

Data Types

We give you three logic “blocks” with
the following interfaces

Nand2()(a,b,out)
Nor2()(a,b,out)
Inv()(a,_a)
You can find the definitions of these blocks in
/usr/local/cad/cast/314/parts.cast

Primitive type is a node
Think of this as a wire in a logic circuit

Defining Functional Blocks

Lets take a look the definition of
Nand2() in parts.cast…

define Nand2()(node a,b; node
out){
prs{

~a | ~b -> out+
a & b -> out-

}
}

Function Headers

The header of a block has a standard format
define BlockName([parameter list])(inputs;outputs)

The parameters are useful for generalizing gates,
more on this later

Inputs and output lists follow the convention that a
type is followed by a comma separated list of node
names, and types are separated by semicolons

Header defines the interface of your block

Function Body

You should not have to write a body that looks
anything like the body of Nand2().

Function bodies that you write will only
instantiate other blocks (yours or the primitive
ones we give you) and wire the gates by
specifying which nodes are connected

Instantiation

Blocks can be instantiated and wired in several
ways

node a,b,c;Nand2 g1;g1.a=a;g1.b=b;g1.out=c;

node a,b,c; Nand2()(a,b,c); (anonymous gate)
node a,b,c; Nand2() g1(a,b); (named gate)

Note the equal sign means connection not
assignment – remember it’s not programming, its
circuit description…

What you are really doing is aliasing the names

A Simple Example

Want an AND gate… draw a picture…
then describe it with CAST

define And2()(node a,b; node
out){
Nand2() g1(a,b);
Inv()(g1.out,out);

}

Arrays

CAST also allows you to declare an indexed
array of nodes as follows

node[10] b; //declares b[0]..b[9]

You can also make arrays of blocks you
define

And2[10] b; //declares 10 AND gates

Nice feature because most logically
constructed circuits exploit repetition

Ranges

CAST supports the ability to pick the index
range when you declare an array as well

node[6..10] x; //declares nodes x[6]..x[10];

You can also specify a subset of an array
using similar notation (useful for
connection)

Connecting Arrays

Arrays can be connected to one another
using the “=” operator

Only restriction is the arrays (or ranges) being
connected must be the same size (obviously)

The following syntax connects x[3] to y[8], x[4] to
y[9], and x[5] to y[10].

x[3..5] = y[8..10];

Loops and Conditionals

CAST provides syntactic constructs to make
the wiring more “elegant”

!!Caution!! This is not a way of specifying circuit
behavior… its just a way of being concise in your
description of the circuit!

Loops have the following structure
<i:range: (some CAST statements) >

Conditionals have the following structure
[condition -> (some CAST statements)]

Parameterized Types

Sometimes you may want to make a block
more general

Instead of making a 3-bit adder, a 4-bit adder, etc.,
you could make one adder definition and
parameterize it by how many bits you’d like it to be.

define adder(int N)(node[N] a,b,sum; node cout)

Can use parameters in things like loop bounds,
conditionals and such… exploit circuit structure

Parameterized Example

Bitwise AND of two N-bit variables…
This is easy, just N AND gates, right?

define BitAnd(int N)(node[N] a,b; node[N] out){
<i:N: And2()(a[i],b[i],out[i]);>

}

Isn’t that pretty ☺

Miscellaneous Tips
Don’t start coding CAST until you’ve drawn yourself a
circuit diagram

CAST also allows you to define your circuit
recursively… this is actually really useful for
generalizing certain circuit topologies like trees

Important from an efficiency standpoint!

You should have a file called myparts.cast that you
include in each cast definition file you make

Myparts.cast should have as its first line
import “314/parts.cast”;

Simulating

Once you have your definitions all set you
must instantiate the definition you want to
test

You can then run the following command on
the file which contains your instantiation

prs2sim filename.cast

This creates two new files:
filename.sim and filename.al

Simulating

You are now ready to simulate your circuit
by typing the following!

irsim.sh filename.sim filename.al

You can type help to see a list of all available
commands irsim offers, and help command to
get help on a specific command

Simulation

The basic thing you do in IRSIM is set input
nodes high or low, take a step forward in
time, and observe the changes (if any) in the
output nodes

To set node A high you say: h A <enter>

To set node A low you say: l A <enter>

To take a step you say: s <enter>

Usually don’t simulate “interactively”…

IRSIM Command Files

Instead you can type your simulation into a
separate file and then just type the filename
in after launching irsim to run your script…

Lets say I defined some function FOO that
takes inputs: node[8] a,b; and produces
outputs node[3] c;

IRSIM Command Files

A typical command file might look like this:

vector A a[{7:0}]
vector B b[{7:0}]
vector C c[{2:0}]
ana –b A B C |graphical analyzer, show vectors in

binary
set A 01001011 |set the value using a binary number
set B %xf4 |set the value using a hex number
s |take a step (you can set duration with stepsize)
set A %x11
s
...

	ECE/CS 314 Spring 2004
	What is CAST?
	Data Types
	Defining Functional Blocks
	Function Headers
	Function Body
	Instantiation
	A Simple Example
	Arrays
	Ranges
	Connecting Arrays
	Loops and Conditionals
	Parameterized Types
	Parameterized Example
	Miscellaneous Tips
	Simulating
	Simulating
	Simulation
	IRSIM Command Files
	IRSIM Command Files

