State Machines

Problem:
Implement a 3-bit sequence recognizer that produces a high on its output bit when the bit sequence 101 is recognized. Assume that the input is a bit sequence entering from the left one bit at a time:

Mealy Machine: outputs depend on both state and inputs (asynchronous output)

	S1	S0
A	0	0
B	0	1
C	1	0

On each arc, the label x / y means the input is x and the output is y .

Current State		Input	Next State		Output
S1	S0	I	S1	S0	Out
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	X	X	X
1	1	1	X	X	X

Using Espresso, the following reduced equations can be obtained:

$$
\begin{aligned}
& S 1^{\prime}=S 0 \cdot I \\
& S 0^{\prime}=I \\
& \text { Out }=S 1 \cdot I
\end{aligned}
$$

Moore Machine: outputs depend only on states

	S1	S0
A	0	0
B	0	1
C	1	0
D	1	1

Note that in a Moore machine, the outputs are attached to the states, rather than the arcs.

Current State		Input	Next State		Output
S1	S0	I	S1	S0	Out
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	0	1	1

Using Espresso, the following reduced equations can be obtained:

$$
\begin{aligned}
& \mathrm{S} 1^{\prime}=\mathrm{S} 1 \cdot \underline{\mathrm{~S} 0} \cdot \mathrm{I}+\mathrm{S} 0 \cdot \underline{\mathrm{I}} \\
& \mathrm{~S} 0^{\prime}=\mathrm{I} \\
& \mathrm{Out}^{\prime}=\mathrm{S} 1 \cdot \mathrm{~S} 0
\end{aligned}
$$

