## ECE/CS 314 Spring 2004

## Combinational Logic

From lecture, we have seen the design of a 1-bit full adder. Now, let's try to add a carryin bit to the input:

| A | B | Cin | Sum | Cout |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

The equations can be derived immediately as:

$$
\begin{aligned}
& \text { Sum }=\underline{a} \underline{b} \underline{c}+\underline{a} b \underline{c} \underline{c}+a \underline{b} \underline{c} \underline{c}+a b c \\
& \text { Cout }=\underline{a} b \underline{c}+a \underline{b} \underline{c}+a \underline{b} \underline{c}+a b c
\end{aligned}
$$

To simplify the equations, Karnot Maps should be used:
Sum:

|  | $\underline{\mathrm{b}} \underline{\mathrm{c}}$ | $\underline{\mathrm{b}} \mathrm{c}$ | b c | $\mathrm{b} \underline{\underline{c}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\underline{\mathrm{a}}$ | 0 | 1 | 0 | 1 |
| a | 1 | 0 | 1 | 0 |

Cout:

|  | $\underline{\mathrm{b}} \underline{\underline{c}}$ | $\underline{\mathrm{~b}} \mathrm{c}$ | bc | $\mathrm{b} \underline{\underline{c}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\underline{\mathrm{a}}$ | 0 | 0 | 1 | 0 |
| a | 0 | 1 | 1 | 1 |

While Sum cannot be reduced further, Cout can be reduced to:

$$
\text { Cout }=a c+a b+b c
$$

## Espresso

Espresso is a logic minimization tool; it is installed on the BSD cluster. To demonstrate it, use the truth table from above. Place the table in a text file as follows (Let's call it adder.raw):

```
.i 3
.0 2
000 00
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
100 10
1 0 1 0 1
110 01
1 1 1 1 1
.e
```

Don't-cares are indicated as '-' (rather than an ' $x$ ' from ECE230).

You can run espresso on this file by executing:

```
espresso -s adder.raw > adder.red
```

The reduced truth table will be saved in adder.red:

```
.i 3
.0 2
.p }
100 10
010 10
0 0 1 1 0
1 1 1 1 0
-11 01
1-1 01
11- 01
.e
```

To extract the equations, look at each column on the right (output) side. A ' 1 ' indicates that the min-term on the left is included in the reduced equation. For example, the Sum column ( $1^{\text {st }}$ column on the right side) has ' 1 's at the last row (11-), which means that the min-terms is $\mathrm{a} \cdot \mathrm{b}$.
(Note: If an equation has more than one min-term, the result is just the "sum" of them)

Sequential Logic
State holding element: D Flip-flop


On a positive edge of the clock signal, the D Flip-flop passes the input value to the output.
Now, let's implement a 2-bit counter:

| Reset | S1 | S0 | S1 ${ }^{\prime}$ | S0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |

The equations of $\mathrm{S} 0^{\prime}$ and $\mathrm{S} 1^{\prime}$ can be derived as:

$$
\begin{aligned}
& S 1^{\prime}=\underline{R e s e t} \underline{S 1} S 0+\underline{R e s e t} S 1 \underline{S 0} \\
& S 0^{\prime}=\underline{R e s e t} \underline{S 1} \underline{S 0}+\underline{\text { Reset }} S 1 \underline{S 0}
\end{aligned}
$$

And here's a gate diagram of the circuit:


Reset

