ECE/CS 314 Spring 2004

Section 5

Combinational Logic

From lecture, we have seen the design of a 1-bit full adder. Now, let's try to add a carryin bit to the input:

А	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The equations can be derived immediately as:

 $Sum = \underline{a} \underline{b} c + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} c$ $Cout = \underline{a} \underline{b} c + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} \underline{c} + \underline{a} \underline{b} c$

To simplify the equations, Karnot Maps should be used:

Sum:

	<u>b</u> <u>c</u>	<u>b</u> c	b c	b <u>c</u>
a	0	1	0	1
a	1	0	1	0

Cout:

	<u>b</u> <u>c</u>	<u>b</u> c	b c	b <u>c</u>
<u>a</u>	0	0	1	0
a	0	1	1	1

While Sum cannot be reduced further, Cout can be reduced to:

Cout = a c + a b + b c

Espresso

Espresso is a logic minimization tool; it is installed on the BSD cluster. To demonstrate it, use the truth table from above. Place the table in a text file as follows (Let's call it adder.raw):

Don't-cares are indicated as '-' (rather than an 'x' from ECE230).

You can run espresso on this file by executing:

espresso –s adder.raw > adder.red

The reduced truth table will be saved in adder.red:

To extract the equations, look at each column on the right (output) side. A '1' indicates that the min-term on the left is included in the reduced equation. For example, the Sum column (1st column on the right side) has '1's at the last row (11-), which means that the min-terms is $a \cdot b$.

(Note: If an equation has more than one min-term, the result is just the "sum" of them)

Sequential Logic

State holding element: D Flip-flop

On a positive edge of the clock signal, the D Flip-flop passes the input value to the output.

Now, let's implement a 2-bit counter:

Reset	S 1	SO	S 1'	S0'
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

The equations of S0' and S1' can be derived as:

 $\begin{array}{l} S1' = \underline{Reset}\,\underline{S1}\,\,S0 + \underline{Reset}\,\,S1\,\,\underline{S0}\\ S0' = \underline{Reset}\,\underline{S1}\,\,\underline{S0} + \underline{Reset}\,\,S1\,\,\underline{S0} \end{array}$

And here's a gate diagram of the circuit:

