
Section Notes: C Programming Language and Project 2

What is Project 2?
• Write the part of gmipc that actually executes instructions
• A simulation single-cycle implementation of the MIPS subset
• Means an you only operate on one instruction at a time

o Decode the instruction
o Fetch the register values
o Compute and store new register values or memory addresses
o Load values from memory or store values to memory

• You’re given some skeleton code and you basically have to fill it in and “simulate”
the effects of all the instructions on the processor state – what is the state?

• You are given a pointer to memory and a pointer to the register file, but you should
not modify memory directly – instead you are given two interface functions to
memory, one for storing and one for loading.
o Keep in mind that you have to do a “load” to simulate the effects of a store

properly – why?

Structure of a C Program
• Kernighan-Ritchie “The C Programming Language” is a good investment
• Can compile your own C programs by typing: gcc filename.c –o outputfilename

#include <stdio.h> //this is a comment, stdio lets you do printf and stuff like that

 /*this is a
 multiline comment*/

int foo(int,float); //function declarations
char x=3; //variable declarations and optional initializations
 //x can be accessed and modified from anywhere it’s “global”

int main(void){

… //a bunch of statements

return 0; //“ok” exit status
}

int foo(int a, float b){ //definition of foo
… //a bunch of declarations and statements – all declarations “local”
return (blah); //at least one of these somewhere because return int
}

C Types
• Four basic types

o int, char, float, double
o actual size of the types is architecture dependent
o come in different “flavors”: e.g. long int, unsigned char, unsigned int
o different flavors don’t amount to different bit patterns in general, just different

mathematical interpretation (e.g. comparison, shifting)
o the basic types are implied to be “signed”

• Arrays/Pointers
o You declare an array by saying: int x[5]
o The name x refers to the base address of the array
o You access elements of the array by giving the array name and an offset into the

array, indexes start at zero – isn’t CS fun! For example: a = x[3];
o You can declare a pointer explicitly, and it initially points to nothing (NULL) as

follows: int *z; //declares a pointer to an integer and names it z.
o Pointers can be used to indirectly change the contents of a memory location, but

to do so you must dereference the pointer to get at the data it points to.
o For example *x = 5 //change the value to which x points, to 5
o You can get the address of a variable by prefixing it with an ampersand.
o An equivalent statement to j = r[3], is j = *(r+3)

• You can also type cast values to explicitly interpret their values a certain way
• What do the following things do?

int *A, *B;
int C=1, D=2;
A = &C;
B = &D;
//ints are 4 bytes long, shorts are 2 bytes long

printf(“A+B=%d\n”,A+B);
printf(“A+B=%d\n”.*A+*B);

printf(“A=%d\n”,(short)(*A));
printf(“A=%d\n”,*((short *) A));
printf(“A=%d\n”,*((short *)A+1));

C constructs/statements
Conditional
If(condition){
…do some thing…
} else if (some other condition){
…do something else…
} else {
…if nothing else do this…
}

Selection
• A convenient way of “decoding”

switch(variablename){
case value1: //if variablename == value1…
 …some statements…
 break;
case value2: //if variablename == value2…
 …some other statements…
 break;
…
default: //if the variablename’s value is not listed
 …do some other values…
}

Loops
• The usual loop constructs, for(i=0;i<bound;i++){…}, do{…}while(condition),

while(condition){…}
• Probably don’t need to write any loops for your project

Bit Manipulation
• How do you set the ith bit of x? x = x | (1<<i);
• How do you clear the ith bit of x? x = x & ~(1<<i);
• Figure out whether ith bit of x is set? (x&(1<<i))?1:0;
• What does ((signed) (x<<16))>>16 do?

