
Recommended C Style and Coding Standards

L.W. Cannon
R.A. Elliott

L.W. Kirchhoff
J.H. Miller
J.M. Milner
R.W. Mitze
E.P. Schan

N.O. Whittington

Bell Labs

Henry Spencer

Zoology Computer Systems
University of Toronto

David Keppel

EECS, UC Berkeley
CS&E, University of Washington

Mark Brader

SoftQuad Incorporated
Toronto

ABSTRACT

This document is an updated version of the Indian Hill C Style and Coding Stan-
dards paper, with modifications by the last three authors. It describes a recommended
coding standard for C programs. The scope is coding style, not functional organization.

February 19, 1997

Recommended C Style and Coding Standards

L.W. Cannon
R.A. Elliott

L.W. Kirchhoff
J.H. Miller
J.M. Milner
R.W. Mitze
E.P. Schan

N.O. Whittington

Bell Labs

Henry Spencer

Zoology Computer Systems
University of Toronto

David Keppel

EECS, UC Berkeley
CS&E, University of Washington

Mark Brader

SoftQuad Incorporated
Toronto

1. Introduction

This document is a modified version of a document from a committee formed at AT&T’s Indian Hill
labs to establish a common set of coding standards and recommendations for the Indian Hill community.
The scope of this work is C coding style. Good style should encourage consistent layout, improve portabil-
ity, and reduce errors. This work does not cover functional organization, or general issues such as the use
of gotos. We1 have tried to combine previous work [1,6,8] on C style into a uniform set of standards that
should be appropriate for any project using C, although parts are biased towards particular systems. Of
necessity, these standards cannot cover all situations. Experience and informed judgement count for much.
Programmers who encounter unusual situations should consult either experienced C programmers or code
written by experienced C programmers (preferably following these rules).

The standards in this document are not of themselves required, but individual institutions or groups
may adopt part or all of them as a part of program acceptance. It is therefore likely that others at your insti-
tution will code in a similar style. Ultimately, the goal of these standards is to increase portability, reduce
maintenance, and above all improve clarity.

Many of the style choices here are somewhat arbitrary. Mixed coding style is harder to maintain
than bad coding style. When changing existing code it is better to conform to the style (indentation, spac-
ing, commenting, naming conventions) of the existing code than it is to blindly follow this document.

‘‘To be clear is professional; not to be clear is unprofessional.’’ — Sir Ernest Gowers.

�����������������������������������

1. The opinions in this document do not reflect the opinions of all authors. This is still an evolving document. Please send com-
ments and suggestions to pardo@cs.washington.edu or {rutgers,cornell,ucsd,ubc-cs,tektronix}!uw-beaver!june!pardo

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 2 -

2. File Organization

A file consists of various sections that should be separated by several blank lines. Although there is
no maximum length limit for source files, files with more than about 1000 lines are cumbersome to deal
with. The editor may not have enough temp space to edit the file, compilations will go more slowly, etc.
Many rows of asterisks, for example, present little information compared to the time it takes to scroll past,
and are discouraged. Lines longer than 79 columns are not handled well by all terminals and should be
avoided if possible. Excessively long lines which result from deep indenting are often a symptom of
poorly-organized code.

2.1. File Naming Conventions

File names are made up of a base name, and an optional period and suffix. The first character of the
name should be a letter and all characters (except the period) should be lower-case letters and numbers.
The base name should be eight or fewer characters and the suffix should be three or fewer characters (four,
if you include the period). These rules apply to both program files and default files used and produced by
the program (e.g., ‘‘rogue.sav’’).

Some compilers and tools require certain suffix conventions for names of files [5]. The following
suffixes are required:

� C source file names must end in .c
� Assembler source file names must end in .s

The following conventions are universally followed:
� Relocatable object file names end in .o
� Include header file names end in .h. An alternate convention that may be preferable in multi-

language environments is to suffix both the language type and .h (e.g. ‘‘foo.c.h’’ or ‘‘foo.ch’’).
� Yacc source file names end in .y
� Lex source file names end in .l

C++ has compiler-dependent suffix conventions, including .c, ..c, .cc, .c.c, and .C. Since much C
code is also C++ code, there is no clear solution here.

In addition, it is conventional to use ‘‘Makefile’’ (not ‘‘makefile’’) for the control file for make (for
systems that support it) and ‘‘README’’ for a summary of the contents of the directory or directory tree.

2.2. Program Files

The suggested order of sections for a program file is as follows:

1. First in the file is a prologue that tells what is in that file. A description of the purpose of the objects
in the files (whether they be functions, external data declarations or definitions, or something else) is
more useful than a list of the object names. The prologue may optionally contain author(s), revision
control information, references, etc.

2. Any header file includes should be next. If the include is for a non-obvious reason, the reason should
be commented. In most cases, system include files like stdio.h should be included before user
include files.

3. Any defines and typedefs that apply to the file as a whole are next. One normal order is to have
‘‘constant’’ macros first, then ‘‘function’’ macros, then typedefs and enums.

4. Next come the global (external) data declarations, usually in the order: externs, non-static globals,
static globals. If a set of defines applies to a particular piece of global data (such as a flags word), the
defines should be immediately after the data declaration or embedded in structure declarations,
indented to put the defines one level deeper than the first keyword of the declaration to which they
apply.

5. The functions come last, and should be in some sort of meaningful order. Like functions should
appear together. A ‘‘breadth-first’’ approach (functions on a similar level of abstraction together) is
preferred over depth-first (functions defined as soon as possible before or after their calls).

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 3 -

Considerable judgement is called for here. If defining large numbers of essentially-independent util-
ity functions, consider alphabetical order.

2.3. Header Files

Header files are files that are included in other files prior to compilation by the C preprocessor.
Some, such as stdio.h, are defined at the system level and must included by any program using the standard
I/O library. Header files are also used to contain data declarations and defines that are needed by more than
one program. Header files should be functionally organized, i.e., declarations for separate subsystems
should be in separate header files. Also, if a set of declarations is likely to change when code is ported
from one machine to another, those declarations should be in a separate header file.

Avoid private header filenames that are the same as library header filenames. The statement
#include "math.h" will include the standard library math header file if the intended one is not found
in the current directory. If this is what you want to happen, comment this fact. Don’t use absolute path-
names for header files. Use the <name> construction for getting them from a standard place, or define
them relative to the current directory. The ‘‘include-path’’ option of the C compiler (−I on many systems)
is the best way to handle extensive private libraries of header files; it permits reorganizing the directory
structure without having to alter source files.

Header files that declare functions or external variables should be included in the file that defines the
function or variable. That way, the compiler can do type checking and the external declaration will always
agree with the definition.

Defining variables in a header file is often a poor idea. Frequently it is a symptom of poor partition-
ing of code between files. Also, some objects like typedefs and initialized data definitions cannot be seen
twice by the compiler in one compilation. On some systems, repeating uninitialized declarations without
the extern keyword also causes problems. Repeated declarations can happen if include files are nested and
will cause the compilation to fail.

Header files should not be nested. The prologue for a header file should, therefore, describe what
other headers need to be #included for the header to be functional. In extreme cases, where a large number
of header files are to be included in several different source files, it is acceptable to put all common #in-
cludes in one include file.

It is common to put the following into each .h file to prevent accidental double-inclusion.

#ifndef EXAMPLE_H
#define EXAMPLE_H
... /* body of example.h file */
#endif /* EXAMPLE_H */

This double-inclusion mechanism should not be relied upon, particularly to perform nested includes.

2.4. Other Files

It is conventional to have a file called ‘‘README’’ to document both ‘‘the bigger picture’’ and is-
sues for the program as a whole. For example, it is common to include a list of all conditional compilation
flags and what they mean. It is also common to list files that are machine dependent, etc.

3. Comments

‘‘When the code and the comments disagree, both are probably wrong.’’ — Norm Schryer

The comments should describe what is happening, how it is being done, what parameters mean,
which globals are used and which are modified, and any restrictions or bugs. Avoid, however, comments
that are clear from the code, as such information rapidly gets out of date. Comments that disagree with the
code are of negative value. Short comments should be what comments, such as ‘‘compute mean value’’,
rather than how comments such as ‘‘sum of values divided by n’’. C is not assembler; putting a comment
at the top of a 3−10 line section telling what it does overall is often more useful than a comment on each
line describing micrologic.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 4 -

Comments should justify offensive code. The justification should be that something bad will happen
if unoffensive code is used. Just making code faster is not enough to rationalize a hack; the performance
must be shown to be unacceptable without the hack. The comment should explain the unacceptable
behavior and describe why the hack is a ‘‘good’’ fix.

Comments that describe data structures, algorithms, etc., should be in block comment form with the
opening /* in columns 1-2, a * in column 2 before each line of comment text, and the closing */ in
columns 2-3. An alternative is to have ** in columns 1-2, and put the closing */ also in 1-2.

/*
* Here is a block comment.
* The comment text should be tabbed or spaced over uniformly.
* The opening slash-star and closing star-slash are alone on a line.
*/

/*
** Alternate format for block comments
*/

Note that grep ’ˆ.*’ will catch all block comments in the file2. Very long block comments such as
drawn-out discussions and copyright notices often start with /* in columns 1-2, no leading * before lines
of text, and the closing */ in columns 1-2. Block comments inside a function are appropriate, and they
should be tabbed over to the same tab setting as the code that they describe. One-line comments alone on a
line should be indented to the tab setting of the code that follows.

if (argc > 1) {
/* Get input file from command line. */
if (freopen(argv[1], "r", stdin) == NULL) {

perror (argv[1]);
}

}

Very short comments may appear on the same line as the code they describe, and should be tabbed
over to separate them from the statements. If more than one short comment appears in a block of code they
should all be tabbed to the same tab setting.

if (a == EXCEPTION) {
b = TRUE; /* special case */

} else {
b = isprime(a); /* works only for odd a */

}

4. Declarations

Global declarations should begin in column 1. All external data declaration should be preceded by
the extern keyword. If an external variable is an array that is defined with an explicit size, then the array
bounds must be repeated in the extern declaration unless the size is always encoded in the array (e.g., a
read-only character array that is always null-terminated). Repeated size declarations are particularly
beneficial to someone picking up code written by another.

The ‘‘pointer’’ qualifier, ‘*’, should be with the variable name rather than with the type.

char *s, *t, *u;

�����������������������������������

2. Some automated program-analysis packages use different characters before comment lines as a marker for lines with specific
items of information. In particular, a line with a ‘−’ in a comment preceding a function is sometimes assumed to be a one-line
summary of the function’s purpose.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 5 -

instead of

char* s, t, u;

which is wrong, since ‘t’ and ‘u’ do not get declared as pointers.

Unrelated declarations, even of the same type, should be on separate lines. A comment describing
the role of the object being declared should be included, with the exception that a list of #defined constants
do not need comments if the constant names are sufficient documentation. The names, values, and com-
ments are usually tabbed so that they line up underneath each other. Use the tab character rather than
blanks (spaces). For structure and union template declarations, each element should be alone on a line with
a comment describing it. The opening brace ({) should be on the same line as the structure tag, and the
closing brace (}) should be in column 1.

struct boat {
int wllength; /* water line length in meters */
int type; /* see below */
long sailarea; /* sail area in square mm */

};

/* defines for boat.type */
#define KETCH (1)
#define YAWL (2)
#define SLOOP (3)
#define SQRIG (4)
#define MOTOR (5)

These defines are sometimes put right after the declaration of type, within the struct declaration, with
enough tabs after the ‘#’ to indent define one level more than the structure member declarations. When
the actual values are unimportant, the enum facility is better3.

enum bt { KETCH=1, YAWL, SLOOP, SQRIG, MOTOR };
struct boat {

int wllength; /* water line length in meters */
enum bt type; /* what kind of boat */
long sailarea; /* sail area in square mm */

};

Any variable whose initial value is important should be explicitly initialized, or at the very least
should be commented to indicate that C’s default initialization to zero is being relied upon. The empty ini-
tializer, ‘‘{}’’, should never be used. Structure initializations should be fully parenthesized with braces.
Constants used to initialize longs should be explicitly long. Use capital letters; for example two long
‘‘2l’’ looks a lot like ‘‘21’’, the number twenty-one.

int x = 1;
char *msg = "message";
struct boat winner[] = {

{ 40, YAWL, 6000000L },
{ 28, MOTOR, 0L },
{ 0 },

};

In any file which is part of a larger whole rather than a self-contained program, maximum use should
be made of the static keyword to make functions and variables local to single files. Variables in particular
should be accessible from other files only when there is a clear need that cannot be filled in another way.
�����������������������������������

3. enums might be better anyway.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 6 -

Such usage should be commented to make it clear that another file’s variables are being used; the comment
should name the other file. If your debugger hides static objects you need to see during debugging, declare
them as STATIC and #define STATIC as needed.

The most important types should be highlighted by typedeffing them, even if they are only integers,
as the unique name makes the program easier to read (as long as there are only a few things typedeffed to
integers!). Structures may be typedeffed when they are declared. Give the struct and the typedef the same
name.

typedef struct splodge_t {
int sp_count;
char*sp_name, *sp_alias;

} splodge_t;

The return type of functions should always be declared. If function prototypes are available, use
them. One common mistake is to omit the declaration of external math functions that return double. The
compiler then assumes that the return value is an integer and the bits are dutifully converted into a (mean-
ingless) floating point value.

‘‘C takes the point of view that the programmer is always right.’’ — Michael DeCorte

5. Function Declarations

Each function should be preceded by a block comment prologue that gives a short description of
what the function does and (if not clear) how to use it. Discussion of non-trivial design decisions and
side-effects is also appropriate. Avoid duplicating information clear from the code.

The function return type should be alone on a line, (optionally) indented one stop4. Do not default to
int; if the function does not return a value then it should be given return type void5. If the value returned
requires a long explanation, it should be given in the prologue; otherwise it can be on the same line as the
return type, tabbed over. The function name (and the formal parameter list) should be alone on a line, in
column 1. Destination (return value) parameters should generally be first (on the left). All formal parame-
ter declarations, local declarations and code within the function body should be tabbed over one stop. The
opening brace of the function body should be alone on a line beginning in column 1.

Each parameter should be declared (do not default to int). In general the role of each variable in the
function should be described. This may either be done in the function comment or, if each declaration is
on its own line, in a comment on that line. Loop counters called ‘‘i’’, string pointers called ‘‘s’’, and in-
tegral types called ‘‘c’’ and used for characters are typically excluded. If a group of functions all have a
like parameter or local variable, it helps to call the repeated variable by the same name in all functions.
(Conversely, avoid using the same name for different purposes in related functions.) Like parameters
should also appear in the same place in the various argument lists.

Comments for parameters and local variables should be tabbed so that they line up underneath each
other. Local variable declarations should be separated from the function’s statements by a blank line.

Be careful when you use or declare functions that take a variable number of arguments (‘‘varargs’’).
There is no truly portable way to do varargs in C. Better to design an interface that uses a fixed number of
arguments. If you must have varargs, use the library macros for declaring functions with variant argument
lists.

If the function uses any external variables (or functions) that are not declared globally in the file,
these should have their own declarations in the function body using the extern keyword.

Avoid local declarations that override declarations at higher levels. In particular, local variables
should not be redeclared in nested blocks. Although this is valid C, the potential confusion is enough that
lint will complain about it when given the −h option.
�����������������������������������

4. ‘‘Tabstops’’ can be blanks (spaces) inserted by your editor in clumps of 2, 4, or 8. Use actual tabs where possible.

5. #define void or #define void int for compilers without the void keyword.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 7 -

6. Whitespace

int i;main(){for(;i["]<i;++i){--i;}"];read(’-’-’-’,i+++"hell\
o, world!\n",’/’/’/’));}read(j,i,p){write(j/p+p,i---j,i/i);}

— Dishonorable mention, Obfuscated C Code Contest, 1984.
Author requested anonymity.

Use vertical and horizontal whitespace generously. Indentation and spacing should reflect the block
structure of the code; e.g., there should be at least 2 blank lines between the end of one function and the
comments for the next.

A long string of conditional operators should be split onto separate lines.

if (foo->next==NULL && totalcount<needed && needed<=MAX_ALLOT
&& server_active(current_input)) { ...

Might be better as

if (foo->next == NULL
&& totalcount < needed && needed <= MAX_ALLOT
&& server_active(current_input))

{
...

Similarly, elaborate for loops should be split onto different lines.

for (curr = *listp, trail = listp;
curr != NULL;
trail = &(curr->next), curr = curr->next)

{
...

Other complex expressions, particularly those using the ternary ?: operator, are best split on to several
lines, too.

c = (a == b)
? d + f(a)
: f(b) - d;

Keywords that are followed by expressions in parentheses should be separated from the left parenthesis by
a blank. (The sizeof operator is an exception.) Blanks should also appear after commas in argument lists to
help separate the arguments visually. On the other hand, macro definitions with arguments must not have a
blank between the name and the left parenthesis, otherwise the C preprocessor will not recognize the argu-
ment list.

7. Examples

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 8 -

/*
* Determine if the sky is blue by checking that it isn’t night.
* CAVEAT: Only sometimes right. May return TRUE when the answer
* is FALSE. Consider clouds, eclipses, short days.
* NOTE: Uses ‘hour’ from ‘hightime.c’. Returns ‘int’ for
* compatibility with the old version.
*/

int /* true or false */
skyblue()
{

extern int hour; /* current hour of the day */

return (hour >= MORNING && hour <= EVENING);
}

/*
* Find the last element in the linked list
* pointed to by nodep and return a pointer to it.
* Return NULL if there is no last element.
*/

node_t *
tail(nodep)

node_t *nodep; /* pointer to head of list */
{

register node_t *np; /* advances to NULL */
register node_t *lp; /* follows one behind np */

if (nodep == NULL)
return (NULL);

for (np = lp = nodep; np != NULL; lp = np, np = np->next)
; /* VOID */

return (lp);
}

8. Simple Statements

There should be only one statement per line unless the statements are very closely related.

case FOO: oogle (zork); boogle (zork); break;
case BAR: oogle (bork); boogle (zork); break;
case BAZ: oogle (gork); boogle (bork); break;

The null body of a for or while loop should be alone on a line and commented so that it is clear that the null
body is intentional and not missing code.

while (*dest++ = *src++)
; /* VOID */

Do not default the test for non-zero, i.e.

if (f() != FAIL)

is better than

if (f())

even though FAIL may have the value 0 which C considers to be false. An explicit test will help you out
later when somebody decides that a failure return should be −1 instead of 0. Explicit comparison should be

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 9 -

used even if the comparison value will never change; e.g., ‘‘if (!(bufsize % sizeof(int)))’’
should be written instead as ‘‘if ((bufsize % sizeof(int)) == 0)’’ to reflect the numeric
(not boolean) nature of the test. A frequent trouble spot is using strcmp to test for string equality, where
the result should never ever be defaulted. The preferred approach is to define a macro STREQ.

#define STREQ(a, b) (strcmp((a), (b)) == 0)

The non-zero test is often defaulted for predicates and other functions or expressions which meet the
following restrictions:

� Evaluates to 0 for false, nothing else.
� Is named so that the meaning of (say) a ‘true’ return is absolutely obvious. Call a predicate isvalid or

valid, not checkvalid.

It is common practice to declare a boolean type ‘‘bool’’ in a global include file. The special names
improve readability immensely.

typedef int bool;
#define FALSE 0
#define TRUE 1

or

typedef enum { NO=0, YES } bool;

Even with these declarations, do not check a boolean value for equality with 1 (TRUE, YES, etc.); instead
test for inequality with 0 (FALSE, NO, etc.). Most functions are guaranteed to return 0 if false, but only
non-zero if true. Thus,

if (func() == TRUE) { ...

must be written

if (func() != FALSE) { ...

It is even better (where possible) to rename the function/variable or rewrite the expression so that the
meaning is obvious without a comparison to true or false (e.g., rename to isvalid()).

There is a time and a place for embedded assignment statements. In some constructs there is no
better way to accomplish the results without making the code bulkier and less readable.

while ((c = getchar()) != EOF) {
process the character

}

The ++ and − − operators count as assignment statements. So, for many purposes, do functions with side
effects. Using embedded assignment statements to improve run-time performance is also possible. How-
ever, one should consider the tradeoff between increased speed and decreased maintainability that results
when embedded assignments are used in artificial places. For example,

a = b + c;
d = a + r;

should not be replaced by

d = (a = b + c) + r;

even though the latter may save one cycle. In the long run the time difference between the two will de-
crease as the optimizer gains maturity, while the difference in ease of maintenance will increase as the hu-
man memory of what’s going on in the latter piece of code begins to fade.

Goto statements should be used sparingly, as in any well-structured code. The main place where
they can be usefully employed is to break out of several levels of switch, for, and while nesting, although
the need to do such a thing may indicate that the inner constructs should be broken out into a separate func-

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 10 -

tion, with a success/failure return code.

for (...) {
while (...) {

...
if (disaster)

goto error;

}
}
...

error:
clean up the mess

When a goto is necessary the accompanying label should be alone on a line and tabbed one stop to the left
of the code that follows. The goto should be commented (possibly in the block header) as to its utility and
purpose. Continue should be used sparingly and near the top of the loop. Break is less troublesome.

Parameters to non-prototyped functions sometimes need to be promoted explicitly. If, for example, a
function expects a 32-bit long and gets handed a 16-bit int instead, the stack can get misaligned. Problems
occur with pointer, integral, and floating-point values.

9. Compound Statements

A compound statement is a list of statements enclosed by braces. There are many common ways of
formatting the braces. Be consistent with your local standard, if you have one, or pick one and use it con-
sistently. When editing someone else’s code, always use the style used in that code.

control {
statement;
statement;

}

The style above is called ‘‘K&R style’’, and is preferred if you haven’t already got a favorite. With K&R
style, the else part of an if-else statement and the while part of a do-while statement should appear on
the same line as the close brace. With most other styles, the braces are always alone on a line.

When a block of code has several labels (unless there are a lot of them), the labels are placed on
separate lines. The fall-through feature of the C switch statement, (that is, when there is no break
between a code segment and the next case statement) must be commented for future maintenance. A
lint-style comment/directive is best.

switch (expr) {
case ABC:
case DEF:

statement;
break;

case UVW:
statement;
/*FALLTHROUGH*/

case XYZ:
statement;
break;

}

Here, the last break is unnecessary, but is required because it prevents a fall-through error if anoth-
er case is added later after the last one. The default case, if used, should be last and does not require a
break if it is last.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 11 -

Whenever an if-else statement has a compound statement for either the if or else section, the state-
ments of both the if and else sections should both be enclosed in braces (called fully bracketed syntax).

if (expr) {
statement;

} else {
statement;
statement;

}

Braces are also essential in if-if-else sequences with no second else such as the following, which will
be parsed incorrectly if the brace after (ex1) and its mate are omitted:

if (ex1) {
if (ex2) {

funca();
}

} else {
funcb();

}

An if-else with else if should be written with the else conditions left-justified.

if (STREQ (reply, "yes")) {
statements for yes
...

} else if (STREQ (reply, "no")) {
...

} else if (STREQ (reply, "maybe")) {
...

} else {
statements for default
...

}

The format then looks like a generalized switch statement and the tabbing reflects the switch between ex-
actly one of several alternatives rather than a nesting of statements.

Do-while loops should always have braces around the body.

The following code is very dangerous:

#ifdef CIRCUIT
define CLOSE_CIRCUIT(circno) { close_circ(circno); }
#else
define CLOSE_CIRCUIT(circno)
#endif

...
if (expr)

statement;
else

CLOSE_CIRCUIT(x)
++i;

Note that on systems where CIRCUIT is not defined the statement ‘‘++i;’’ will only get executed when
expr is false! This example points out both the value of naming macros with CAPS and of making code
fully-bracketed.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 12 -

Sometimes an if causes an unconditional control transfer via break, continue, goto, or
return. The else should be implicit and the code should not be indented.

if (level > limit)
return (OVERFLOW)

normal();
return (level);

The ‘‘flattened’’ indentation tells the reader that the boolean test is invariant over the rest of the enclosing
block.

10. Operators

Unary operators should not be separated from their single operand. Generally, all binary operators
except ‘.’ and ‘−>’ should be separated from their operands by blanks. Some judgement is called for in
the case of complex expressions, which may be clearer if the ‘‘inner’’ operators are not surrounded by
spaces and the ‘‘outer’’ ones are.

If you think an expression will be hard to read, consider breaking it across lines. Splitting at the
lowest-precedence operator near the break is best. Since C has some unexpected precedence rules, expres-
sions involving mixed operators should be parenthesized. Too many parentheses, however, can make a
line harder to read because humans aren’t good at parenthesis-matching.

There is a time and place for the binary comma operator, but generally it should be avoided. The
comma operator is most useful to provide multiple initializations or operations, as in for statements. Com-
plex expressions, for instance those with nested ternary ?: operators, can be confusing and should be
avoided if possible. There are some macros like getchar where both the ternary operator and comma
operators are useful. The logical expression operand before the ?: should be parenthesized and both return
values must be the same type.

11. Naming Conventions

Individual projects will no doubt have their own naming conventions. There are some general rules
however.

� Names with leading and trailing underscores are reserved for system purposes and should not be
used for any user-created names. Most systems use them for names that the user should not have to
know. If you must have your own private identifiers, begin them with a letter or two identifying the
package to which they belong.

� #define constants should be in all CAPS.
� Enum constants are Capitalized or in all CAPS
� Function, typedef, and variable names, as well as struct, union, and enum tag names should be in

lower case.
� Many macro ‘‘functions’’ are in all CAPS. Some macros (such as getchar and putchar) are in

lower case since they may also exist as functions. Lower-case macro names are only acceptable if
the macros behave like a function call, that is, they evaluate their parameters exactly once and do not
assign values to named parameters. Sometimes it is impossible to write a macro that behaves like a
function even though the arguments are evaluated exactly once.

� Avoid names that differ only in case, like foo and Foo. Similarly, avoid foobar and foo_bar. The
potential for confusion is considerable.

� Similarly, avoid names that look like each other. On many terminals and printers, ‘l’, ‘1’ and ‘I’
look quite similar. A variable named ‘l’ is particularly bad because it looks so much like the constant
‘1’.

In general, global names (including enums) should have a common prefix identifying the module that
they belong with. Globals may alternatively be grouped in a global structure. Typedeffed names often
have ‘‘_t’’ appended to their name.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 13 -

Avoid names that might conflict with various standard library names. Some systems will include
more library code than you want. Also, your program may be extended someday.

12. Constants

Numerical constants should not be coded directly. The #define feature of the C preprocessor should
be used to give constants meaningful names. Symbolic constants make the code easier to read. Defining
the value in one place also makes it easier to administer large programs since the constant value can be
changed uniformly by changing only the define. The enumeration data type is a better way to declare vari-
ables that take on only a discrete set of values, since additional type checking is often available. At the
very least, any directly-coded numerical constant must have a comment explaining the derivation of the
value.

Constants should be defined consistently with their use; e.g. use 540.0 for a float instead of 540
with an implicit float cast. There are some cases where the constants 0 and 1 may appear as themselves in-
stead of as defines. For example if a for loop indexes through an array, then

for (i = 0; i < ARYBOUND; i++)

is reasonable while the code

door_t *front_door = opens(door[i], 7);
if (front_door == 0)

error("can’t open %s\n", door[i]);

is not. In the last example front_door is a pointer. When a value is a pointer it should be compared to
NULL instead of 0. NULL is available either as part of the standard I/O library’s header file stdio.h or in
stdlib.h for newer systems. Even simple values like 1 or 0 are often better expressed using defines like
TRUE and FALSE (sometimes YES and NO read better).

Simple character constants should be defined as character literals rather than numbers. Non-text
characters are discouraged as non-portable. If non-text characters are necessary, particularly if they are
used in strings, they should be written using a escape character of three octal digits rather than one (e.g.,
’\007’). Even so, such usage should be considered machine-dependent and treated as such.

13. Macros

Complex expressions can be used as macro parameters, and operator-precedence problems can arise
unless all occurrences of parameters have parentheses around them. There is little that can be done about
the problems caused by side effects in parameters except to avoid side effects in expressions (a good idea
anyway) and, when possible, to write macros that evaluate their parameters exactly once. There are times
when it is impossible to write macros that act exactly like functions.

Some macros also exist as functions (e.g., getc and fgetc). The macro should be used in imple-
menting the function so that changes to the macro will be automatically reflected in the function. Care is
needed when interchanging macros and functions since function parameters are passed by value, while
macro parameters are passed by name substitution. Carefree use of macros requires that they be declared
carefully.

Macros should avoid using globals, since the global name may be hidden by a local declaration.
Macros that change named parameters (rather than the storage they point at) or may be used as the left-
hand side of an assignment should mention this in their comments. Macros that take no parameters but
reference variables, are long, or are aliases for function calls should be given an empty parameter list, e.g.,

#define OFF_A() (a_global+OFFSET)
#define BORK() (zork())
#define SP3() if (b) { int x; av = f (&x); bv += x; }

Macros save function call/return overhead, but when a macro gets long, the effect of the call/return
becomes negligible, so a function should be used instead.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 14 -

In some cases it is appropriate to make the compiler insure that a macro is terminated with a semi-
colon.

if (x==3)
SP3();

else
BORK();

If the semicolon is omitted after the call to SP3, then the else will (silently!) become associated with the
if in the SP3 macro. With the semicolon, the else doesn’t match any if! The macro SP3 can be writ-
ten safely as

#define SP3() \
do { if (b) { int x; av = f (&x); bv += x; }} while (0)

Writing out the enclosing do-while by hand is awkward and some compilers and tools may complain that
there is a constant in the ‘‘while’’ conditional. A macro for declaring statements may make program-
ming easier.

#ifdef lint
static int ZERO;

#else
define ZERO 0
#endif
#define STMT(stuff) do { stuff } while (ZERO)

Declare SP3 with

#define SP3() \
STMT(if (b) { int x; av = f (&x); bv += x; })

Using STMT will help prevent small typos from silently changing programs.

Except for type casts, sizeof, and hacks such as the above, macros should contain keywords only
if the entire macro is surrounded by braces.

14. Conditional Compilation.

Conditional compilation is useful for things like machine-dependencies, debugging, and for setting
certain options at compile-time. Beware of conditional compilation. Various controls can easily combine
in unforeseen ways. If you #ifdef machine dependencies, make sure that when no machine is specified, the
result is an error, not a default machine. (Use ‘‘#error’’ and indent it so it works with older compilers.)
If you #ifdef optimizations, the default should be the unoptimized code rather than an uncompilable pro-
gram. Be sure to test the unoptimized code.

Note that the text inside of an #ifdeffed section may be scanned (processed) by the compiler, even if
the #ifdef is false. Thus, even if the #ifdeffed part of the file never gets compiled (e.g., #ifdef
COMMENT), it cannot be arbitrary text.

Put #ifdefs in header files instead of source files when possible. Use the #ifdefs to define macros that
can be used uniformly in the code. For instance, a header file for checking memory allocation might look
like (omitting definitions for REALLOC and FREE):

#ifdef DEBUG
extern void *mm_malloc();

define MALLOC(size) (mm_malloc(size))
#else

extern void *malloc();
define MALLOC(size) (malloc(size))
#endif

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 15 -

Conditional compilation should generally be on a feature-by-feature basis. Machine or operating
system dependencies should be avoided in most cases.

#ifdef BSD4
long t = time ((long *)NULL);

#endif

The preceding code is poor for two reasons: there may be 4BSD systems for which there is a better choice,
and there may be non-4BSD systems for which the above is the best code. Instead, use define symbols
such as TIME_LONG and TIME_STRUCT and define the appropriate one in a configuration file such as
config.h.

15. Debugging

‘‘C Code. C code run. Run, code, run... PLEASE!!!’’ — Barbara Tongue

If you use enums, the first enum constant should have a non-zero value, or the first constant should
indicate an error.

enum { STATE_ERR, STATE_START, STATE_NORMAL, STATE_END } state_t;
enum { VAL_NEW=1, VAL_NORMAL, VAL_DYING, VAL_DEAD } value_t;

Uninitialized values will then often ‘‘catch themselves’’.

Check for error return values, even from functions that ‘‘can’t’’ fail. Consider that close() and
fclose() can and do fail, even when all prior file operations have succeeded. Write your own functions
so that they test for errors and return error values or abort the program in a well-defined way. Include a lot
of debugging and error-checking code and leave most of it in the finished product. Check even for ‘‘im-
possible’’ errors. [8]

Use the assert facility to insist that each function is being passed well-defined values, and that inter-
mediate results are well-formed.

Build in the debug code using as few #ifdefs as possible. For instance, if ‘‘mm_malloc’’ is a de-
bugging memory allocator, then MALLOC will select the appropriate allocator, avoids littering the code
with #ifdefs, and makes clear the difference between allocation calls being debugged and extra memory
that is allocated only during debugging.

#ifdef DEBUG
define MALLOC(size) (mm_malloc(size))
#else
define MALLOC(size) (malloc(size))
#endif

Check bounds even on things that ‘‘can’t’’ overflow. A function that writes on to variable-sized
storage should take an argument maxsize that is the size of the destination. If there are times when the
size of the destination is unknown, some ‘magic’ value of maxsize should mean ‘‘no bounds checks’’.
When bound checks fail, make sure that the function does something useful such as abort or return an error
status.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 16 -

/*
* INPUT: A null-terminated source string ‘src’ to copy from and
* a ‘dest’ string to copy to. ‘maxsize’ is the size of ‘dest’
* or UINT_MAX if the size is not known. ‘src’ and ‘dest’ must
* both be shorter than UINT_MAX, and ‘src’ must be no longer than
* ‘dest’.
* OUTPUT: The address of ‘dest’ or NULL if the copy fails.
* ‘dest’ is modified even when the copy fails.
*/

char *
copy (dest, maxsize, src)

char *dest, *src;
unsigned maxsize;

{
char *dp = dest;

while (maxsize−− > 0)
if ((*dp++ = *src++) == ’\0’)

return (dest);

return (NULL);
}

In all, remember that a program that produces wrong answers twice as fast is infinitely slower. The
same is true of programs that crash occasionally or clobber valid data.

16. Portability

‘‘C combines the power of assembler with the portability of assembler.’’
— Anonymous, alluding to Bill Thacker.

The advantages of portable code are well known. This section gives some guidelines for writing
portable code. Here, ‘‘portable’’ means that a source file can be compiled and executed on different
machines with the only change being the inclusion of possibly different header files and the use of different
compiler flags. The header files will contain #defines and typedefs that may vary from machine to
machine. In general, a new ‘‘machine’’ is different hardware, a different operating system, a different
compiler, or any combination of these. Reference [1] contains useful information on both style and porta-
bility. The following is a list of pitfalls to be avoided and recommendations to be considered when design-
ing portable code:

� Write portable code first, worry about detail optimizations only on machines where they prove neces-
sary. Optimized code is often obscure. Optimizations for one machine may produce worse code on
another. Document performance hacks and localize them as much as possible. Documentation
should explain how it works and why it was needed (e.g., ‘‘loop executes 6 zillion times’’).

� Recognize that some things are inherently non-portable. Examples are code to deal with particular
hardware registers such as the program status word, and code that is designed to support a particular
piece of hardware, such as an assembler or I/O driver. Even in these cases there are many routines
and data organizations that can be made machine independent.

� Organize source files so that the machine-independent code and the machine-dependent code are in
separate files. Then if the program is to be moved to a new machine, it is a much easier task to deter-
mine what needs to be changed. Comment the machine dependence in the headers of the appropriate
files.

� Any behavior that is described as ‘‘implementation defined’’ should be treated as a machine (com-
piler) dependency. Assume that the compiler or hardware does it some completely screwy way.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 17 -

� Pay attention to word sizes. Objects may be non-intuitive sizes, Pointers are not always the same
size as ints, the same size as each other, or freely interconvertible. The following table shows bit
sizes for basic types in C for various machines and compilers.

type pdp11 VAX/11 68000 Cray-2 Unisys Harris 80386
series family 1100 H800

� ���

char 8 8 8 8 9 8 8
short 16 16 8/16 64(32) 18 24 8/16
int 16 32 16/32 64(32) 36 24 16/32
long 32 32 32 64 36 48 32
char* 16 32 32 64 72 24 16/32/48
int* 16 32 32 64(24) 72 24 16/32/48
int(*)() 16 32 32 64 576 24 16/32/48

Some machines have more than one possible size for a given type. The size you get can depend both
on the compiler and on various compile-time flags. The following table shows ‘‘safe’’ type sizes on
the majority of systems. Unsigned numbers are the same bit size as signed numbers.

Type Minimum No Smaller
Bits Than

���

char 8
short 16 char
int 16 short
long 32 int
float 24
double 38 float
any * 14
char * 15 any *
void * 15 any *

� The void* type is guaranteed to have enough bits of precision to hold a pointer to any data object.
The void(*)() type is guaranteed to be able to hold a pointer to any function. Use these types when
you need a generic pointer. (Use char* and char(*)(), respectively, in older compilers). Be sure to
cast pointers back to the correct type before using them.

� Even when, say, an int* and a char* are the same size, they may have different formats. For exam-
ple, the following will fail on some machines that have sizeof(int*) equal to
sizeof(char*). The code fails because free expects a char* and gets passed an int*.

int *p = (int *) malloc (sizeof(int));
free (p);

� Note that the size of an object does not guarantee the precision of that object. The Cray-2 may use
64 bits to store an int, but a long cast into an int and back to a long may be truncated to 32 bits.

� The integer constant zero may be cast to any pointer type. The resulting pointer is called a null
pointer for that type, and is different from any other pointer of that type. A null pointer always com-
pares equal to the constant zero. A null pointer might not compare equal with a variable that has the
value zero. Null pointers are not always stored with all bits zero. Null pointers for two different
types are sometimes different. A null pointer of one type cast in to a pointer of another type will be
cast in to the null pointer for that second type.

� On ANSI compilers, when two pointers of the same type access the same storage, they will compare
as equal. When non-zero integer constants are cast to pointer types, they may become identical to
other pointers. On non-ANSI compilers, pointers that access the same storage may compare as dif-
ferent. The following two pointers, for instance, may or may not compare equal, and they may or
may not access the same storage6.

�����������������������������������

6. The code may also fail to compile, fault on pointer creation, fault on pointer comparison, or fault on pointer dereferences.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 18 -

((int *) 2)
((int *) 3)

If you need ‘magic’ pointers other than NULL, either allocate some storage or treat the pointer as a
machine dependence.

extern int x_int_dummy; /* in x.c */
#define X_FAIL (NULL)
#define X_BUSY (&x_int_dummy)

#define X_FAIL (NULL)
#define X_BUSY MD_PTR1 /* MD_PTR1 from "machdep.h" */

� Floating-point numbers have both a precision and a range. These are independent of the size of the
object. Thus, overflow (underflow) for a 32-bit floating-point number will happen at different values
on different machines. Also, 4.9 times 5.1 will yield two different numbers on two different
machines. Differences in rounding and truncation can give surprisingly different answers.

� On some machines, a double may have less range or precision than a float.
� On some machines the first half of a double may be a float with similar value. Do not depend on this.
� Watch out for signed characters. On some VAXes, for instance, characters are sign extended when

used in expressions, which is not the case on many other machines. Code that assumes
signed/unsigned is unportable. For example, array[c] won’t work if c is supposed to be positive
and is instead signed and negative. If you must assume signed or unsigned characters, comment
them as SIGNED or UNSIGNED. Unsigned behavior can be guaranteed with unsigned char.

� Avoid assuming ASCII. If you must assume, document and localize. Remember that characters may
hold (much) more than 8 bits.

� Code that takes advantage of the two’s complement representation of numbers on most machines
should not be used. Optimizations that replace arithmetic operations with equivalent shifting opera-
tions are particularly suspect. If absolutely necessary, machine-dependent code should be #ifdeffed
or operations should be performed by #ifdeffed macros. You should weigh the time savings with the
potential for obscure and difficult bugs when your code is moved.

� In general, if the word size or value range is important, typedef ‘‘sized’’ types. Large programs
should have a central header file which supplies typedefs for commonly-used width-sensitive types,
to make it easier to change them and to aid in finding width-sensitive code. Unsigned types other
than unsigned int are highly compiler-dependent. If a simple loop counter is being used where either
16 or 32 bits will do, then use int, since it will get the most efficient (natural) unit for the current
machine.

� Data alignment is also important. For instance, on various machines a 4-byte integer may start at any
address, start only at an even address, or start only at a multiple-of-four address. Thus, a particular
structure may have its elements at different offsets on different machines, even when given elements
are the same size on all machines. Indeed, a structure of a 32-bit pointer and an 8-bit character may
be 3 sizes on 3 different machines. As a corollary, pointers to objects may not be interchanged free-
ly; saving an integer through a pointer to 4 bytes starting at an odd address will sometimes work,
sometimes cause a core dump, and sometimes fail silently (clobbering other data in the process).
Pointer-to-character is a particular trouble spot on machines which do not address to the byte. Align-
ment considerations and loader peculiarities make it very rash to assume that two consecutively-
declared variables are together in memory, or that a variable of one type is aligned appropriately to
be used as another type.

� The bytes of a word are of increasing significance with increasing address on machines such as the
VAX (little-endian) and of decreasing significance with increasing address on other machines such as
the 68000 (big-endian). The order of bytes in a word and of words in larger objects (say, a double
word) might not be the same. Hence any code that depends on the left-right orientation of bits in an
object deserves special scrutiny. Bit fields within structure members will only be portable so long as

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 19 -

two separate fields are never concatenated and treated as a unit. [1,3] Actually, it is nonportable to
concatenate any two variables.

� There may be unused holes in structures. Suspect unions used for type cheating. Specifically, a
value should not be stored as one type and retrieved as another. An explicit tag field for unions may
be useful.

� Different compilers use different conventions for returning structures. This causes a problem when
libraries return structure values to code compiled with a different compiler. Structure pointers are
not a problem.

� Do not make assumptions about the parameter passing mechanism. especially pointer sizes and
parameter evaluation order, size, etc. The following code, for instance, is very nonportable.

c = foo (getchar(), getchar());

char
foo (c1, c2, c3)

char c1, c2, c3;
{

char bar = *(&c1 + 1);
return (bar); /* often won’t return c2 */

}

This example has lots of problems. The stack may grow up or down (indeed, there need not even be
a stack!). Parameters may be widened when they are passed, so a char might be passed as an int, for
instance. Arguments may be pushed left-to-right, right-to-left, in arbitrary order, or passed in regis-
ters (not pushed at all). The order of evaluation may differ from the order in which they are pushed.
One compiler may use several (incompatible) calling conventions.

� On some machines, the null character pointer ((char *)0) is treated the same way as a pointer to
a null string. Do not depend on this.

� Do not modify string constants7. One particularly notorious (bad) example is

s = "/dev/tty??";
strcpy (&s[8], ttychars);

� The address space may have holes. Simply computing the address of an unallocated element in an
array (before or after the actual storage of the array) may crash the program. If the address is used in
a comparison, sometimes the program will run but clobber data, give wrong answers, or loop forever.
In ANSI C, a pointer into an array of objects may legally point to the first element after the end of the
array; this is usually safe in older implementations. This ‘‘outside’’ pointer may not be derefer-
enced.

� Only the == and != comparisons are defined for all pointers of a given type. It is only portable to
use <, <=, >, or >= to compare pointers when they both point in to (or to the first element after) the
same array. It is likewise only portable to use arithmetic operators on pointers that both point into
the same array or the first element afterwards.

� Word size also affects shifts and masks. The following code will clear only the three rightmost bits
of an int on some 68000s. On other machines it will also clear the upper two bytes.

x &= 0177770

Use instead

x &= ˜07

�����������������������������������

7. Some libraries attempt to modify and then restore read-only string variables. Programs sometimes won’t port because of these
broken libraries. The libraries are getting better.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 20 -

which works properly on all machines. Bitfields do not have these problems.
� Side effects within expressions can result in code whose semantics are compiler-dependent, since

C’s order of evaluation is explicitly undefined in most places. Notorious examples include the fol-
lowing.

a[i] = b[i++];

In the above example, we know only that the subscript into b has not been incremented. The index
into a could be the value of i either before or after the increment.

struct bar_t { struct bar_t *next; } bar;
bar->next = bar = tmp;

In the second example, the address of ‘‘bar->next’’ may be computed before the value is as-
signed to ‘‘bar’’.

bar = bar->next = tmp;

In the third example, bar can be assigned before bar->next. Although this appears to violate
the rule that ‘‘assignment proceeds right-to-left’’, it is a legal interpretation. Consider the following
example:

long i;
short a[N];
i = old
i = a[i] = new;

The value that ‘‘i’’ is assigned must be a value that is typed as if assignment proceeded right-to-left.
However, ‘‘i’’ may be assigned the value ‘‘(long)(short)new’’ before ‘‘a[i]’’ is assigned
to. Compilers do differ.

� Be suspicious of numeric values appearing in the code (‘‘magic numbers’’).
� Avoid preprocessor tricks. Tricks such as using /**/ for token pasting and macros that rely on ar-

gument string expansion will break reliably.

#define FOO(string) (printf("string = %s",(string)))
...
FOO(filename);

Will only sometimes be expanded to

(printf("filename = %s",(filename)))

Be aware, however, that tricky preprocessors may cause macros to break accidentally on some
machines. Consider the following two versions of a macro.

#define LOOKUP(chr) (a[’c’+(chr)]) /* Works as intended. */
#define LOOKUP(c) (a[’c’+(c)]) /* Sometimes breaks. */

The second version of LOOKUP can be expanded in two different ways and will cause code to break
mysteriously.

� Become familiar with existing library functions and defines. (But not too familiar. The internal de-
tails of library facilities, as opposed to their external interfaces, are subject to change without warn-
ing. They are also often quite unportable.) You should not be writing your own string compare rou-
tine, terminal control routines, or making your own defines for system structures. ‘‘Rolling your
own’’ wastes your time and makes your code less readable, because another reader has to figure out
whether you’re doing something special in that reimplemented stuff to justify its existence. It also
prevents your program from taking advantage of any microcode assists or other means of improving
performance of system routines. Furthermore, it’s a fruitful source of bugs. If possible, be aware of
the differences between the common libraries (such as ANSI, POSIX, and so on).

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 21 -

� Use lint when it is available. It is a valuable tool for finding machine-dependent constructs as well as
other inconsistencies or program bugs that pass the compiler. If your compiler has switches to turn
on warnings, use them.

� Suspect labels inside blocks with the associated switch or goto outside the block.
� Wherever the type is in doubt, parameters should be cast to the appropriate type. Always cast NULL

when it appears in non-prototyped function calls. Do not use function calls as a place to do type
cheating. C has confusing promotion rules, so be careful. For example, if a function expects a 32-bit
long and it is passed a 16-bit int the stack can get misaligned, the value can get promoted wrong, etc.

� Use explicit casts when doing arithmetic that mixes signed and unsigned values.
� The inter-procedural goto, longjmp, should be used with caution. Many implementations ‘‘forget’’

to restore values in registers. Declare critical values as volatile if you can or comment them as
VOLATILE.

� Some linkers convert names to lower-case and some only recognize the first six letters as unique.
Programs may break quietly on these systems.

� Beware of compiler extensions. If used, document and consider them as machine dependencies.
� A program cannot generally execute code in the data segment or write into the code segment. Even

when it can, there is no guarantee that it can do so reliably.

17. ANSI C

Modern C compilers support some or all of the ANSI proposed standard C. Whenever possible, write
code to run under standard C, and use features such as function prototypes, constant storage, and volatile
storage. Standard C improves program performance by giving better information to optimizers. Standard
C improves portability by insuring that all compilers accept the same input language and by providing
mechanisms that try to hide machine dependencies or emit warnings about code that may be machine-
dependent.

17.1. Compatibility

Write code that is easy to port to older compilers. For instance, conditionally #define new (standard)
keywords such as const and volatile in a global .h file. Standard compilers pre-define the preprocessor
symbol __STDC__8. The void* type is hard to get right simply, since some older compilers understand
void but not void*. It is easiest to create a new (machine- and compiler-dependent) VOIDP type, usual-
ly char* on older compilers.

�����������������������������������

8. Some compilers predefine __STDC__ to be 0, in an attempt to indicate partial compliance with the ANSI C standard. Unfor-
tunately, it is not possible to determine which ANSI facilities are provided. Thus, such compilers are broken. See the rule
about ‘‘don’t write around a broken compiler unless you are forced to.’’

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 22 -

#if __STDC__
typedef void *voidp;

define COMPILER_SELECTED
#endif
#ifdef A_TARGET
define const
define volatile
define void int

typedef char *voidp;
define COMPILER_SELECTED
#endif
#ifdef ...

...
#endif
#ifdef COMPILER_SELECTED
undef COMPILER_SELECTED
#else

{ NO TARGET SELECTED! }
#endif

Note that under ANSI C, the ‘#’ for a preprocessor directive must be the first non-whitespace charac-
ter on a line. Under older compilers it must be the first character on the line.

When a static function has a forward declaration, the forward declaration must include the storage
class. For older compilers, the class must be ‘‘extern’’. For ANSI compilers, the class must be ‘‘static’’.
but global functions must still be declared as ‘‘extern’’. Thus, forward declarations of static functions
should use a #define such as FWD_STATIC that is #ifdeffed as appropriate.

An ‘‘#ifdef NAME’’ should end with either ‘‘#endif’’ or ‘‘#endif /* NAME */’’, not with
‘‘#endif NAME’’. The comment should not be used on short #ifdefs, as it is clear from the code.

ANSI trigraphs may cause programs with strings containing ‘‘??’’ may break mysteriously.

17.2. Formatting

The style for ANSI C is the same as for regular C, with two notable exceptions: storage qualifiers and
parameter lists.

Because const and volatile have strange binding rules, each const or volatile object should
have a separate declaration.

int const *s; /* YES */
int const *s, *t; /* NO */

Prototyped functions merge parameter declaration and definition in to one list. Parameters should be
commented in the function comment.

/*
* ‘bp’: boat trying to get in.
* ‘stall’: a list of stalls, never NULL.
* returns stall number, 0 => no room.
*/

int
enter_pier (boat_t const *bp, stall_t *stall)
{

...

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 23 -

17.3. Prototypes

Function prototypes should be used to make code more robust and to make it run faster. Unfor-
tunately, the prototyped declaration

extern void bork (char c);

is incompatible with the definition

void
bork (c)

char c;
...

The prototype says that c is to be passed as the most natural type for the machine, possibly a byte. The
non-prototyped (backwards-compatible) definition implies that c is always passed as an int9. If a function
has promotable parameters then the caller and callee must be compiled identically. Either both must use
function prototypes or neither can use prototypes. The problem can be avoided if parameters are promoted
when the program is designed. For example, bork can be defined to take an int parameter.

The above declaration works if the definition is prototyped.

void
bork (char c)
{

...

Unfortunately, the prototyped syntax will cause non-ANSI compilers to reject the program.

It is easy to write external declarations that work with both prototyping and with older compilers10.

#if __STDC__
define PROTO(x) x
#else
define PROTO(x) ()
#endif

extern char **ncopies PROTO((char *s, short times));

Note that PROTO must be used with double parentheses.

In the end, it may be best to write in only one style (e.g., with prototypes). When a non-prototyped
version is needed, it is generated using an automatic conversion tool.

17.4. Pragmas

Pragmas are used to introduce machine-dependent code in a controlled way. Obviously, pragmas
should be treated as machine dependencies. Unfortunately, the syntax of ANSI pragmas makes it impossi-
ble to isolate them in machine-dependent headers.

Pragmas are of two classes. Optimizations may safely be ignored. Pragmas that change the system
behavior (‘‘required pragmas’’) may not. Required pragmas should be #ifdeffed so that compilation will
abort if no pragma is selected.

Two compilers may use a given pragma in two very different ways. For instance, one compiler may
use ‘‘haggis’’ to signal an optimization. Another might use it to indicate that a given statement, if
reached, should terminate the program. Thus, when pragmas are used, they must always be enclosed in
machine-dependent #ifdefs. Pragmas must always be #ifdefed out for non-ANSI compilers. Be sure to in-
�����������������������������������

9. Such automatic type promotion is called widening. For older compilers, the widening rules require that all char and short
parameters are passed as ints and that float parameters are passed as doubles.

10. Note that using PROTO violates the rule ‘‘don’t change the syntax via macro substitution.’’ It is regrettable that there isn’t a
better solution.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 24 -

dent the ‘#’ character on the #pragma, as older preprocessors will halt on it otherwise.

#if defined(__STDC__) && defined(USE_HAGGIS_PRAGMA)
#pragma (HAGGIS)

#endif

‘‘The ‘#pragma’ command is specified in the ANSI standard to have an arbitrary
implementation-defined effect. In the GNU C preprocessor, ‘#pragma’ first attempts to run the
game ‘rogue’; if that fails, it tries to run the game ‘hack’; if that fails, it tries to run GNU
Emacs displaying the Tower of Hanoi; if that fails, it reports a fatal error. In any case,
preprocessing does not continue.’’

— Manual for the GNU C preprocessor for GNU CC 1.34.

18. Special Considerations

This section contains some miscellaneous do’s and don’ts.
� Don’t change syntax via macro substitution. It makes the program unintelligible to all but the perpe-

trator.
� Don’t use floating-point variables where discrete values are needed. Using a float for a loop counter

is a great way to shoot yourself in the foot. Always test floating-point numbers as <= or >=, never
use an exact comparison (== or !=).

� Compilers have bugs. Common trouble spots include structure assignment and bitfields. You cannot
generally predict which bugs a compiler has. You could write a program that avoids all constructs
that are known broken on all compilers. You won’t be able to write anything useful, you might still
encounter bugs, and the compiler might get fixed in the meanwhile. Thus, you should write
‘‘around’’ compiler bugs only when you are forced to use a particular buggy compiler.

� Do not rely on automatic beautifiers. The main person who benefits from good program style is the
programmer him/herself, and especially in the early design of handwritten algorithms or pseudo-
code. Automatic beautifiers can only be applied to complete, syntactically correct programs and
hence are not available when the need for attention to white space and indentation is greatest. Pro-
grammers can do a better job of making clear the complete visual layout of a function or file, with
the normal attention to detail of a careful programmer. (In other words, some of the visual layout is
dictated by intent rather than syntax and beautifiers cannot read minds.) Sloppy programmers should
learn to be careful programmers instead of relying on a beautifier to make their code readable.

� Accidental omission of the second ‘‘=’’ of the logical compare is a problem. Use explicit tests.
Avoid assignment with implicit test.

abool = bbool;
if (abool) { ...

When embedded assignment is used, make the test explicit so that it doesn’t get ‘‘fixed’’ later.

while ((abool = bbool) != FALSE) { ...

while (abool = bbool) { ... /* VALUSED */

while (abool = bbool, abool) { ...

� Explicitly comment variables that are changed out of the normal control flow, or other code that is
likely to break during maintenance.

� Modern compilers will put variables in registers automatically. Use the register sparingly to indicate
the variables that you think are most critical. In extreme cases, mark the 2-4 most critical values as
register and mark the rest as REGISTER. The latter can be #defined to register on those
machines with many registers.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 25 -

19. Lint

Lint is a C program checker [2][11] that examines C source files to detect and report type incompati-
bilities, inconsistencies between function definitions and calls, potential program bugs, etc. The use of lint
on all programs is strongly recommended, and it is expected that most projects will require programs to use
lint as part of the official acceptance procedure.

It should be noted that the best way to use lint is not as a barrier that must be overcome before
official acceptance of a program, but rather as a tool to use during and after changes or additions to the
code. Lint can find obscure bugs and insure portability before problems occur. Many messages from lint
really do indicate something wrong. One fun story is about is about a program that was missing an argu-
ment to ‘fprintf’.

fprintf ("Usage: foo -bar <file>\n");

The author never had a problem. But the program dumped core every time an ordinary user made a mis-
take on the command line. Many versions of lint will catch this.

Most options are worth learning. Some options may complain about legitimate things, but they will
also pick up many botches. Note that −p11 checks function-call type-consistency for only a subset of li-
brary routines, so programs should be linted both with and without −p for the best ‘‘coverage’’.

Lint also recognizes several special comments in the code. These comments both shut up lint when
the code otherwise makes it complain, and also document special code.

20. Make

One other very useful tool is make [7]. During development, make recompiles only those modules
that have been changed since the last time make was used. It can be used to automate other tasks, as well.
Some common conventions include:

all always makes all binaries
clean remove all intermediate files

debug make a test binary ’a.out’ or ’debug’
depend make transitive dependencies
install install binaries, libraries, etc.

deinstall back out of ‘‘install’’
mkcat install the manual page(s)

lint run lint
print/list make a hard copy of all source files

shar make a shar of all source files
spotless make clean, use revision control to put away sources.

Note: doesn’t remove Makefile, although it is a source file
source undo what spotless did

tags run ctags, (using the -t flag is suggested)
rdist distribute sources to other hosts
file.c check out the named file from revision control

In addition, command-line defines can be given to define either Makefile values (such as ‘‘CFLAGS’’) or
values in the program (such as ‘‘DEBUG’’).

21. Project-Dependent Standards

Individual projects may wish to establish additional standards beyond those given here. The follow-
ing issues are some of those that should be addressed by each project program administration group.

� What additional naming conventions should be followed? In particular, systematic prefix conven-
tions for functional grouping of global data and also for structure or union member names can be

�����������������������������������

11. Flag names may vary.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 26 -

useful.
� What kind of include file organization is appropriate for the project’s particular data hierarchy?
� What procedures should be established for reviewing lint complaints? A tolerance level needs to be

established in concert with the lint options to prevent unimportant complaints from hiding complaints
about real bugs or inconsistencies.

� If a project establishes its own archive libraries, it should plan on supplying a lint library file [2] to
the system administrators. The lint library file allows lint to check for compatible use of library
functions.

� What kind of revision control needs to be used?

22. Conclusion

A set of standards has been presented for C programming style. Among the most important points
are:

� The proper use of white space and comments so that the structure of the program is evident from the
layout of the code. The use of simple expressions, statements, and functions so that they may be un-
derstood easily.

� To keep in mind that you or someone else will likely be asked to modify code or make it run on a
different machine sometime in the future. Craft code so that it is portable to obscure machines. Lo-
calize optimizations since they are often confusing and may be ‘‘pessimizations’’ on other machines.

� Many style choices are arbitrary. Having a style that is consistent (particularly with group standards)
is more important than following absolute style rules. Mixing styles is worse than using any single
bad style.

As with any standard, it must be followed if it is to be useful. If you have trouble following any of
these standards don’t just ignore them. Talk with your local guru, or an experienced programmer at your
institution.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 27 -

References

[1] B.A. Tague, C Language Portability, Sept 22, 1977. This document issued by department 8234 con-
tains three memos by R.C. Haight, A.L. Glasser, and T.L. Lyon dealing with style and portability.

[2] S.C. Johnson, Lint, a C Program Checker, USENIX UNIX† Supplementary Documents, November
1986.

[3] R.W. Mitze, The 3B/PDP-11 Swabbing Problem, Memorandum for File, 1273-770907.01MF, Sep-
tember 14, 1977.

[4] R.A. Elliott and D.C. Pfeffer, 3B Processor Common Diagnostic Standards- Version 1, Memoran-
dum for File, 5514-780330.01MF, March 30, 1978.

[5] R.W. Mitze, An Overview of C Compilation of UNIX User Processes on the 3B, Memorandum for
File, 5521-780329.02MF, March 29, 1978.

[6] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice Hall 1978, Second Ed.
1988, ISBN 0-13-110362-8.

[7] S.I. Feldman, Make — A Program for Maintaining Computer Programs, USENIX UNIX Supplemen-
tary Documents, November 1986.

[8] Ian Darwin and Geoff Collyer, Can’t Happen or /* NOTREACHED */ or Real Programs Dump
Core, USENIX Association Winter Conference, Dallas 1985 Proceedings.

[9] Brian W. Kernighan and P. J. Plauger The Elements of Programming Style. McGraw-Hill, 1974,
Second Ed. 1978, ISBN 0-07-034-207-5.

[10] J. E. Lapin Portable C and UNIX System Programming, Prentice Hall 1987, ISBN 0-13-686494-5.

[11] Ian F. Darwin, Checking C Programs with lint, O’Reilly & Associates, 1989. ISBN 0-937175-30-7.

[12] Andrew R. Koenig, C Traps and Pitfalls, Addison-Wesley, 1989. ISBN 0-201-17928-8.

�����������������������������������

† UNIX is a trademark of Bell Laboratories.

Recommended C Coding Standards Revision: 6.0 25 June 1990

- 28 -

The Ten Commandments for C Programmers

Henry Spencer

1 Thou shalt run lint frequently and study its pronouncements with care, for verily its perception and
judgement oft exceed thine.

2 Thou shalt not follow the NULL pointer, for chaos and madness await thee at its end.

3 Thou shalt cast all function arguments to the expected type if they are not of that type already, even
when thou art convinced that this is unnecessary, lest they take cruel vengeance upon thee when thou
least expect it.

4 If thy header files fail to declare the return types of thy library functions, thou shalt declare them thy-
self with the most meticulous care, lest grievous harm befall thy program.

5 Thou shalt check the array bounds of all strings (indeed, all arrays), for surely where thou typest
‘‘foo’’ someone someday shall type ‘‘supercalifragilisticexpialidocious’’.

6 If a function be advertised to return an error code in the event of difficulties, thou shalt check for that
code, yea, even though the checks triple the size of thy code and produce aches in thy typing fingers,
for if thou thinkest ‘‘it cannot happen to me’’, the gods shall surely punish thee for thy arrogance.

7 Thou shalt study thy libraries and strive not to re-invent them without cause, that thy code may be
short and readable and thy days pleasant and productive.

8 Thou shalt make thy program’s purpose and structure clear to thy fellow man by using the One True
Brace Style, even if thou likest it not, for thy creativity is better used in solving problems than in
creating beautiful new impediments to understanding.

9 Thy external identifiers shall be unique in the first six characters, though this harsh discipline be irk-
some and the years of its necessity stretch before thee seemingly without end, lest thou tear thy hair
out and go mad on that fateful day when thou desirest to make thy program run on an old system.

10 Thou shalt foreswear, renounce, and abjure the vile heresy which claimeth that ‘‘All the world’s a
VAX’’, and have no commerce with the benighted heathens who cling to this barbarous belief, that
the days of thy program may be long even though the days of thy current machine be short.

Recommended C Coding Standards Revision: 6.0 25 June 1990

