Useful for evaluating the impact of a change. (A general observation.)

Insight:

• Improving a feature cannot improve performance beyond the use of the feature

Suppose we introduce a particular enhancement that improves fraction f of execution time by factor S. Then:

Execution time $new = ((1-f) + f/S) \times Execution$ time

Task: complete EE/CS 314 project

- Walk to lab: 15 minutes
- Work in lab: 600 minutes
- Food: 45 minutes
- Walk home: 10 minutes
- Total time = 670 minutes.

Skip meals! And sleep in the lab! :-) \Rightarrow 10.4% improvement

Observation: doesn't help with the time spent working.

Other Performance Metrics

Commonly used: MIPS (Millions of instructions per second)

 $\label{eq:MIPS} \text{MIPS} = \frac{\text{Instruction count}}{\text{Execution time} \times 10^6}$

Problems with MIPS as a metric:

- Instructions with different capabilities?
- Programs with different instruction mixes?
- Might not predict which machine is faster!

Consider an optimized and unoptimized version of a program:

		lemory ALU nstrs. Instrs.			
Unopt	200 M	150 M	50 M	400 M	
Optimized	100 M	100 M	50 M	250 M	

	Memory	ALU	Branch	CPI
	cycles (2x)	cycles (1x)	cycles (3x)	
Unopt	400 M	150 M	150 M	1.75
Optimized	200 M	100 M	150 M	1.8

MIPS As A Performance Metric

Assume a 750MHz Clock:

- MIPS (Unopt): 750/1.75 = 428.6
- MIPS (opt): 750/1.8 = 416.7

Execution time:

- Unopt: $CPI \times IC \times 1/CR$ = 1.75 × 400/750 = 0.93 secs
- Opt: $CPI \times IC \times 1/CR$

 $= 1.8 \times 250/750 = 0.6$ secs

MIPS doesn't predict which program is faster! (why?)

What Is "Typical"?

- Source of serious debate
- Instruction mix can significantly impact performance
- Benchmarks for performance
 - Started with simple "toy" programs (quicksort, sieve, etc)
 - Moved to synthetic benchmarks (dhrystone, whetstone)
 - Kernels (time critical parts of real programs)
 - Today: SPEC (collection of standard programs)

Given the execution time of a number of programs, can we come up with one figure of merit?

Arithmetic mean:

Average time =
$$\frac{1}{n} \sum_{i=1}^{n} \text{Execution time}_i$$

Assumes each benchmark is equally important; long-running benchmarks dominate.

If we know workload, we can weight execution times:

Weighted average time =
$$\frac{\sum_{i=1}^{n} W_i \times \text{Execution time}_i}{\sum_{i=1}^{n} W_i}$$

Pick weights to be 1/(time on a reference machine)

What if we attempt a summary using normalized performance? Consider two machines A and B:

	P1	P2	Relative to A		Relative to B			
	secs	secs	P1	P2	AM	P1	P2	AM
A	10	50	1	1	1	0.1	50	25
В	100	1	10	0.02	5	1	1	1

Total execution time on A: 60 secs Total execution time on B: 101 secs

If equal runs of programs P1 and P2, A is 1.7 times faster than B.

Can be used to combine relative measures.

Geometric Mean =
$$\sqrt[n]{\prod_{i=1}^{n} R_i}$$

	P1	P2	Relative to A		Relative to B			
	secs	secs	P1	P2	GM	P1	P2	GM
A	10	50	1	1	1	0.1	50	2.2
В	100	1	10	0.02	0.45	1	1	1

Some unfortunate properties:

- does not track execution time!
- all improvements are equal

Used to average rates like MIPS or MFLOPS.

Harmonic Mean
$$= rac{n}{\sum_{i=1}^{n}(1/R_i)}$$

Another way to look at it:

$$\frac{1}{\text{Harmonic Mean}} = \frac{\sum_{i=1}^{n} (1/R_i)}{n}$$

i.e. convert rate to time/task, average, convert back to rate. Also can be weighted like arithmetic mean.

Time is the measure of performance!

• Recall how we derived the CPU performance equation.

Typically, tradeoff between performance and cost.

• cost: parts, labor for assembly, etc.

New metric: power.

- portable devices
- want to extend battery life

Where does power dissipation come from?

- Underlying implementation: transistor networks
- We can approximate these as RC circuits
- Power dissipated: CV^2 , C capacitance, V voltage. (Resistors are dissipative)
- Power dissipated when the voltage on a wire changes.

(Quick recap: $I = \frac{V}{R}e^{-t/RC}$, $E = CV^2$) \Rightarrow time $\propto 1/V$, energy $\propto V^2$ \Rightarrow power $\propto V^3$

Total power:

- Alpha 21164: 50W
- Alpha 21264: 72W
- 550 MHz Pentium III: 30.8W
- 300 MHz Mobile Pentium II: 9W
- 160 MHz StrongARM: 0.5W

Sources of power consumption:

- Inputs to combinational logic, flip-flops
- Signals within combinational logic
- Clock keeps changing!

Minimize power consumption:

- Avoid "spurious" changes of signal values
- Turn off clock when part of the circuit not in use clock gating
- "Modes" of operation: turn off large parts of the chip
- Slow down clock in idle mode
- Reduce voltage in idle mode
- Only activate part of circuit used for computation?
- Eliminate clocks?

